

A-1

SAFETY PRECAUTIONS
(Read these precautions before using this product.)

Before using MELSEC-Q, -L, or -F series programmable controllers, please read the manuals included with each

product and the relevant manuals introduced in those manuals carefully, and pay full attention to safety to handle

the product correctly.

Make sure that the end users read the manuals included with each product, and keep the manuals in a safe

place for future reference.

A-2

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major

or serious accident; and

ii) where the backup and fail-safe function are systematically or automatically provided outside of

the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general

industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT

LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT,

WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR

LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR

USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS,

OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY

MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

 • Nuclear Power Plants and any other power plants operated by Power companies, and/or any

other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.

 • Railway companies or Public service purposes, and/or any other cases in which establishment of

a special quality assurance system is required by the Purchaser or End User.

 • Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as

Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation,

Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or

Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a

significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the

PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT

is limited only for the specific applications agreed to by Mitsubishi and provided further that no

special quality assurance or fail-safe, redundant or other safety features which exceed the general

specifications of the PRODUCTs are required. For details, please contact the Mitsubishi

representative in your region.

A-3

REVISIONS
The manual number is written at the bottom left of the back cover.

Print date Manual number Revision

Jul., 2008 SH(NA)-080782ENG-A First edition

Jan., 2009 SH(NA)-080782ENG-B

Q00UJCPU, Q00UCPU, Q01UCPU, Q10UDHCPU, Q10UDEHCPU,

Q20UDHCPU, Q20UDEHCPU, FX series

MANUALS

Generic Terms and Abbreviations in This Manual, Section 1.3, Section 4.3.3,

Section 4.3.4, Section 4.4.1, Section 4.4.2, Appendix 1

Jul., 2009 SH(NA)-080782ENG-C

Q00JCPU, Q00CPU, Q01CPU

Section 3.5, Section 3.6, Section 4.4, Section 4.4.1, Section 4.4.2, Section 4.4.3,
Section 4.4.4, Section 4.4.5, Section 4.4.6, Section 4.6, Section 4.8, Appendix 1

PURPOSE OF THIS MANUAL is changed to Section 1.2,
Generic Terms and Abbreviations in This Manual is changed to Section 1.3,
Section 1.5, Section 4.2.8, Section 4.3.4, Section 4.5 is changed to Section 4.4.7,
Section 4.5.2, Section 4.5.3, Section 4.6 is changed to Section 4.4.8,
Appendix 2, Appendix 3, Appendix 1 to 2 are changed to Appendix 2 to 3

Oct., 2009 SH(NA)-080782ENG-D

Section 1.3, Section 5.2.2, Appendix 2

Jan., 2010 SH(NA)-080782ENG-E

L02CPU, L26CPU-BT

CONDITIONS OF USE FOR THE PRODUCT

MANUALS, Section 1.2, Section 1.3, Section 1.5, Section 4.4.1, Section 4.4.4,

Section 4.5.1, Section 4.5.2, Section 4.6

Apr., 2010 SH(NA)-080782ENG-F

Q50UDEHCPU, Q100UDEHCPU

Section 1.2, Section 1.3, Section 1.5, Appendix 2

Sep., 2010 SH(NA)-080782ENG-G

Section 4.4.7, Section 5.1.1, Section 5.1.3, Appendix 2

Jan., 2011 SH(NA)-080782ENG-H

Section 1.2, Section 5.1.1

Mar., 2011 SH(NA)-080782ENG-I

Section 4.2.5, Section 5.2.3, Section 5.2.4

Section 1.2, Section 4.2.2, Section 4.2.3, Section 4.2.4, Section 4.2.8,

Section 4.3.4, Section 4.4.4, Section 4.4.7, Section 4.6, Section 5.1.3,

Section 5.1.5

Model Addition

Addition

Correction

Model Addition

Addition

Correction

Correction

Model Addition

Addition

Correction

Model Addition

Correction

Correction

Correction

Addition

Correction

A-4

Japanese manual version SH-080735-R

 2008 MITSUBISHI ELECTRIC CORPORATION

Jul., 2011 SH(NA)-080782ENG-J

L02CPU-P, L26CPU-PBT

Section 5.2.5

Section 1.3, Section 1.4, Section 1.5, Section 4.2.6, Section 4.2.7, Section 4.4.2,

Section 4.4.3, Section 4.4.4, Section 5.1.3, Section 5.1.6, Section 5.2,

Section 5.2.2

May, 2012 SH(NA)-080782ENG-K "PLC" was changed to "programmable controller".

FX3GC

INTRODUCTION, MANUALS, Section 1.2, Section 1.3, Section 1.5, Section 4.1.3,

Section 4.2.7, Section 4.3.5, Section 4.4.4, Section 4.4.6, Section 4.5.1,

Section 5.2.4, Appendix 2

Feb., 2013 SH(NA)-080782ENG-L Overall revision due to addition of a Process CPU, Redundant CPU, Universal

model QCPU, and LCPU

Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU, Q12PRHCPU,

Q25PRHCPU, Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU,

Q26UDVCPU, L02SCPU, L06CPU, L26CPU

Jul., 2013 SH(NA)-080782ENG-M

L02SCPU-P, L06CPU-P, L26CPU-P, FX3S

Section 1.2, Section 1.3, Section 1.5, Section 4.3.5, Section 4.4.4, Section 4.6

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may
occur as a result of using the contents noted in this manual.

Print date Manual number Revision

Model Addition

Addition

Correction

Model Addition

Correction

Model Addition

Model Addition

Correction

A-5

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q, -L, or -F series programmable controllers.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with

the programming specifications to handle the product correctly.

When applying the program examples introduced in this manual to an actual system, ensure the applicability and

confirm that it will not cause system control problems.

CONTENTS

SAFETY PRECAUTIONS ...A - 1

CONDITIONS OF USE FOR THE PRODUCT ...A - 2

REVISIONS...A - 3

INTRODUCTION...A - 5

CONTENTS ..A - 5

MANUALS...A - 8

1. OVERVIEW 1 - 1 to 1 - 8

1.1 Overview 1 - 2

1.2 Purpose of This Manual 1 - 2

1.3 Terms 1 - 6

1.4 Features of Structured Programs 1 - 7

1.5 Applicable CPU Modules 1 - 8

1.6 Compatible Software Package 1 - 8

2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS 2 - 1 to 2 - 4

2.1 What is a Hierarchical Sequence Program? 2 - 2

2.2 What is a Structured Sequence Program? 2 - 3

3. PROCEDURE FOR CREATING PROGRAMS 3 - 1 to 3 - 2

3.1 Procedure for Creating Sequence Programs in Structured Project 3 - 2

4. PROGRAM CONFIGURATION 4 - 1 to 4 - 58

4.1 Overview of Program Configuration 4 - 2

4.1.1 Project ... 4 - 3

4.1.2 Program files.. 4 - 3

4.1.3 Tasks ... 4 - 4

4.2 POUs 4 - 5

4.2.1 Types of POU .. 4 - 5

4.2.2 Program... 4 - 6

4.2.3 Functions ... 4 - 6

4.2.4 Function blocks.. 4 - 7

4.2.5 Operators... 4 - 7

4.2.6 Ladder blocks .. 4 - 8

4.2.7 Programming languages for POUs.. 4 - 9

4.2.8 Functions, function blocks, and operators ... 4 - 10

A-6

4.2.9 EN and ENO .. 4 - 13

4.3 Labels 4 - 15

4.3.1 Global labels .. 4 - 15

4.3.2 Local labels.. 4 - 15

4.3.3 Label classes ... 4 - 16

4.3.4 Setting labels ... 4 - 17

4.3.5 Data types.. 4 - 18

4.3.6 Expressing methods of constants.. 4 - 20

4.4 Method for Specifying Data 4 - 21

4.4.1 Bit data... 4 - 22

4.4.2 Word (16 bits) data .. 4 - 23

4.4.3 Double word (32 bits) data... 4 - 26

4.4.4 Single-precision real/double-precision real data.. 4 - 29

4.4.5 String data ... 4 - 33

4.4.6 Time data... 4 - 34

4.4.7 Arrays .. 4 - 35

4.4.8 Structures .. 4 - 37

4.5 Device and Address 4 - 38

4.5.1 Device.. 4 - 38

4.5.2 Address.. 4 - 39

4.5.3 Correspondence between devices and addresses.. 4 - 40

4.6 Index Setting 4 - 43

4.7 Libraries 4 - 55

4.7.1 User libraries.. 4 - 56

4.8 Precautions on Assigning a Name 4 - 57

5. WRITING PROGRAMS 5 - 1 to 5 - 20

5.1 ST 5 - 2

5.1.1 Standard format ... 5 - 2

5.1.2 Operators in ST language.. 5 - 3

5.1.3 Syntax in ST language... 5 - 4

5.1.4 Calling functions in ST language ... 5 - 9

5.1.5 Calling function blocks in ST language.. 5 - 10

5.1.6 Precautions when using conditional syntax and iteration syntax... 5 - 11

5.2 Structured Ladder/FBD 5 - 13

5.2.1 Standard format ... 5 - 13

5.2.2 Ladder symbols in structured ladder/FBD language.. 5 - 14

5.2.3 Executing order.. 5 - 16

5.2.4 Ladder branches and compilation results .. 5 - 17

5.2.5 Precautions on creating programs with structured ladder/FBD ... 5 - 19

A-7

APPENDICES App - 1 to App - 14

Appendix 1Correspondence between Generic Data Types and Devices App - 2

Appendix 2Character Strings that cannot be Used in Label Names and Data Names App - 6

Appendix 3Recreating Ladder Programs App - 9

Appendix 3.1Procedure for creating a structured program...App - 9

Appendix 3.2Example of creating a structured program...App - 10

INDEX Index - 1 to Index - 2

A-8

MANUALS

The manuals related to this product are listed below.

Please place an order as needed.

(1) Structured programming

(2) Operation of GX Works2

Operating manuals in PDF format are stored on the CD-ROM of the software package. Printed

manuals are sold separately. To order manuals, please provide the manual number (model

code) listed in the table above.

Manual name
Manual number

(Model code)

MELSEC-Q/L Structured Programming Manual (Common Instructions)
Specifications and functions of common instructions, such as sequence instructions, basic instructions,
and application instructions, that can be used in structured programs

(Sold separately)

SH-080783ENG

(13JW07)

MELSEC-Q/L Structured Programming Manual (Application Functions)
Specifications and functions of application functions that can be used in structured programs

(Sold separately)

SH-080784ENG

(13JW08)

MELSEC-Q/L Structured Programming Manual (Special Instructions)
Specifications and functions of special instructions, such as module dedicated instructions, PID control
instructions, and built-in I/O function instructions, that can be used in structured programs

(Sold separately)

SH-080785ENG

(13JW09)

FXCPU Structured Programming Manual [Device & Common]
Devices and parameters for structured programming provided in GX Works2

(Sold separately)

JY997D26001
(09R925)

FXCPU Structured Programming Manual [Basic & Applied Instruction]
Sequence instructions for structured programming provided in GX Works2

(Sold separately)

JY997D34701
(09R926)

FXCPU Structured Programming Manual [Application Functions]
Application functions for structured programming provided in GX Works2

(Sold separately)

JY997D34801
(09R927)

Manual name
Manual number

(Model code)

GX Works2 Version 1 Operating Manual (Common)

System configuration, parameter settings, and online operations of GX Works2, which are common to
Simple projects and Structured projects

(Sold separately)

SH-080779ENG

(13JU63)

GX Works2 Version 1 Operating Manual (Structured Project)
Operations, such as programming and monitoring in Structured projects, of GX Works2

(Sold separately)

SH-080781ENG

(13JU65)

GX Works2 Beginner’s Manual (Structured Project)
Basic operations, such as programming, editing, and monitoring in Structured projects, of GX Works2.
This manual is intended for first-time users of GX Works2.
 (Sold separately)

SH-080788ENG

(13JZ23)

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

PR
O

C
ED

U
R

E
FO

R

C
R

EA
TI

N
G

 P
R

O
G

R
AM

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

1

1-1

OVERVIEW

1.1 Overview. 1-2

1.2 Purpose of This Manual . 1-2

1.3 Terms . 1-6

1.4 Features of Structured Programs . 1-7

1.5 Applicable CPU Modules . 1-8

1.6 Compatible Software Package . 1-8

1-2 1.1 Overview

1.1 Overview

This manual describes program configurations and content for creating sequence programs

using a structured programming method, and provides basic knowledge for writing programs.

1.2 Purpose of This Manual

This manual explains programming methods, programming languages, and other information

necessary for creating structured programs.

Manuals for reference are listed in the following table according to their purpose.

For information such as the contents and number of each manual, refer to the list of 'Related

manuals'.

(1) Operation of GX Works2

Purpose
GX Works2
Installation
Instructions

GX Works2
Beginner's Manual

GX Works2 Version 1
Operating Manual

Simple
Project

Structured
Project

Common
Simple
Project

Structured
Project

Intelligent
Function
Module

Installation

Learning the
operating
environment and
installation method

Learning a USB
driver installation
method

Operation of
GX Works2

Learning all functions
of GX Works2

Learning the project
types and available
languages in GX
Works2

Learning the basic
operations and
operating procedures
when creating a
simple project for the
first time

Learning the basic
operations and
operating procedures
when creating a
structured project for
the first time

Learning the
operations of
available functions
regardless of project
type.

Learning the
functions and
operation methods
for programming

Learning data setting
methods for
intelligent function
module

Details

Details

Outline

Outline

Details

Details

Details

Outline Details Details

Details

1.2 Purpose of This Manual

1-3

1

O
V

E
R

V
IE

W

(2) Operations in each programming language

For details of instructions used in each programming language, refer to the section 3 on the
next page.

Purpose

GX Works2
Beginner's Manual

GX Works2 Version 1
Operating Manual

Simple
Project

Structured
Project

Simple
Project

Structured
Project

Simple
Project

Ladder

SFC

ST

Structured
Project

Ladder

SFC

Structured ladder/
FBD

ST

*1: MELSAP3 and FX series SFC only

Outline Details

*1

Outline
Details

Outline Details

Outline Details

*1

Outline
Details

Outline Details

Outline Details

1-4 1.2 Purpose of This Manual

(3) Details of instructions in each programming language (for QCPU (Q mode)/LCPU)

Purpose

MELSEC-
Q/L/F

Structured
Programming

Manual

MELSEC-Q/L
Structured Programming Manual

MELSEC-
Q/L

Programming
Manual

MELSEC-Q/L/QnA
Programming Manual

MELSEC-Q
Programming

/Structured
Programming

Manual

Manual for
module to
be used

Fundamentals Common
Instructions

Special
Instructions

Application
Functions

Common
Instructions

PID Control
Instructions SFC

Process
Control

Instructions


All
languages

Learning details of
programmable
controller CPU
error codes,
special relays, and
special registers

Using
ladder
language

Learning the types
and details of
common
instructions

Learning the types
and details of
instructions for
intelligent function
modules

Learning the types
and details of
instructions for
network modules

Learning the types
and details of
instructions for the
PID control
function

Learning the types
and details of the
process control
instructions

Using SFC
language

Learning details of
specifications,
functions, and
instructions of SFC
(MELSAP3)

Using
structured
ladder/FBD
/ST
language

Learning the
fundamentals for
creating a
structured program

Learning the types
and details of the
common
instructions

Learning the types
and details of
instructions for
intelligent function
modules

Learning the types
and details of
instructions for
network modules

Learning the types
and details of
instructions for the
PID control
function

Learning the types
and details of
application
functions

Learning the types
and details of the
process control
instructions

*1: Refer to the User's Manual (Hardware Design, Maintenance and Inspection) for the CPU module used.

Details

*1

Details

Details

Details

Details

Details

Details

Details

Details

Outline Details

Outline Details

Outline Details

Details

Details

1.2 Purpose of This Manual

1-5

1

O
V

E
R

V
IE

W

(4) Details of instructions in each programming language (for FXCPU)

Purpose

MELSEC-
Q/L/F

Structured
Programming

Manual

FXCPU Structured Programming
Manual FXCPU Programming Manual

Fundamentals Device &
Common

Basic &
Applied

Instruction

Application
Functions

FX0, FX0S,
FX0N, FX1,
FXU, FX2C

FX1S, FX1N,
FX2N,
FX1NC,
FX2NC

FX3S, FX3G,
FX3U,
Fx3GC,
FX3UC

Using ladder
language

Learning the types
and details of basic/
application
instructions,
descriptions of
devices and
parameters

Using SFC
language

Learning details of
specifications,
functions, and
instructions of SFC

Using
structured
ladder/FBD/
ST
language

Learning the
fundamentals for
creating a structured
program

Learning the
descriptions of
devices, parameters,
and error codes

Learning the types
and details of
sequence
instructions

Learning the types
and details of
application functions

Details Details Details

Details Details Details

Details

Details

Details

Details

1-6 1.3 Terms

1.3 Terms

This manual uses the generic terms and abbreviations listed in the following table to discuss the

software packages and programmable controller CPUs. Corresponding module models are also

listed if needed.

Term Description

GX Works2

The product name of the software package for the MELSEC programmable controllersGX Developer

GX IEC Developer

Basic model QCPU A generic term for the Q00JCPU, Q00CPU, and Q01CPU

High Performance model

QCPU
A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU

Process CPU A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU

Redundant CPU A generic term for the Q12PRHCPU and Q25PRHCPU

Universal model

QCPU

A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU,

Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU,

Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDEHCPU,

Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDEHCPU, Q50UDEHCPU, and

Q100UDEHCPU

High-speed Universal

model QCPU
A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU

QCPU (Q mode)
A generic term for the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant

CPU, and Universal model QCPU

LCPU
A generic term for the L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU,

L26CPU-P, L26CPU-BT, and L26CPU-PBT

FXCPU
A generic term for MELSEC-FX series programmable controllers

(FX0S, FX0, FX0N, FX1, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U, FX3UC)

CPU module A generic term for the QCPU (Q mode), LCPU, and FXCPU

QnU(D)(H)CPU
A generic term for the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU,

Q13UDHCPU, Q20UDHCPU, and Q26UDHCPU

QnUDVCPU A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU

QnUDE(H)CPU
A generic term for the Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU,

Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU

Personal computer The generic term for personal computers where Windows® operates

IEC 61131-3 The abbreviation for the IEC 61131-3 international standard

Common instruction

A generic term for the sequence instructions, basic instructions, application instructions, data link

instructions, multiple CPU dedicated instructions, multiple CPU high-speed transmission dedicated

instructions, and redundant system instructions

Special instruction
A generic term for the module dedicated instructions, PID control instructions, socket communication

function instructions, built-in I/O function instructions, and data logging function instructions

Application function
A generic term for the functions, such as functions and function blocks, defined in IEC 61131-3.

(The functions are executed with a set of common instructions in a programmable controller.)

1.4 Features of Structured Programs

1-7

1

O
V

E
R

V
IE

W

1.4 Features of Structured Programs

This section explains the features of structured programs.

(1) Structured design

A structured design is a method to program control content performed by a programmable
controller CPU, which are divided into small processing units (components) to create
hierarchical structures. A user can design programs knowing the component structures of
sequence programs by using the structured programming.

The following are the advantages of creating hierarchical programs.

 • A user can start programming by planning the outline of a program, then gradually work
into detailed designs.

 • Programs stated at the lowest level of a hierarchical design are extremely simple and
each program has a high degree of independence.

The following are the advantages of creating structured programs.

 • The process of each component is clarified, allowing a good perspective of the program.

 • Programs can be divided and created by multiple programmers.

 • Program reusability is increased, and it improves the efficiency in development.

(2) Multiple programming languages

Multiple programming languages are available for structured programs. A user can select
the most appropriate programming language for each purpose, and combine them for
creating programs.
Different programming language can be used for each POU.

Table 1.4-1 Programming languages that can be used for structured programs

For outlines of the programming languages, refer to the following section.

 Section 4.2.7. Programming languages for POUs
For details on each programming language, refer to the following chapter.

 Chapter 5. WRITING PROGRAMS
The ladder/SFC languages used in the existing GX Developer and Simple projects of GX
Works2 can be used.
For details on writing programs, refer to the following manuals.

 Programming manuals for each CPU

(3) Improved program reusability

Program components can be stored as libraries. This means program assets can be utilized
to improve the reusability of programs.

Name Description

ST (structured text) A text language similar to C language, aimed for computer engineers.

Structured ladder A graphic language that is expressed in form of ladder by using elements such as contacts and coils.

FBD
A graphic language that is expressed in form of ladder by connecting elements such as functions and

function blocks with lines.

1-8 1.5 Applicable CPU Modules

1.5 Applicable CPU Modules

The following table shows the applicable CPU modules for programs in the Structured project.

Table 1.5-1 Applicable CPU modules

1.6 Compatible Software Package

The following programming tool is used for creating, editing, and monitoring the programs in the

Structured project.

Table 1.6-1 Compatible software package

(1) What is GX Works2?

GX Works2 is a software package used for editing and debugging sequence programs,
monitoring programmable controller CPUs, and other operations. It runs on a personal

computer in the Microsoft® Windows® Operating System environment.

Created sequence programs are managed in units of 'projects' for each programmable
controller CPU. Projects are broadly divided into 'Simple project' and 'Structured project'.

This manual explains the basic programming by referring the Structured project in

GX Works2.

Programmable controller type

Basic model QCPU Q00JCPU, Q00CPU, Q01CPU

High Performance model QCPU Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU

Process CPU Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU

Redundant CPU Q12PRHCPU, Q25PRHCPU

Universal model QCPU

Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU,

Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVHCPU,

Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDEHCPU,

Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU,

Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU,

Q26UDVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU

LCPU
L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU,

L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT

FXCPU
FX0S, FX0, FX0N, FX1, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N,

FX2NC, FX3S, FX3G, FX3GC, FX3U, FX3UC

Software package name Model name

GX Works2 SW1DNC-GXW2-E

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

2

2-1

STRUCTURED DESIGN OF SEQUENCE PROGRAMS

2.1 What is a Hierarchical Sequence Program?. 2-2

2.2 What is a Structured Sequence Program? . 2-3

2-2 2.1 What is a Hierarchical Sequence Program?

2.1 What is a Hierarchical Sequence Program?

The hierarchy is to create a sequence program by dividing control functions performed in a

programmable controller CPU into a number of levels.

In higher levels, the processing order and timing in a fixed range is controlled.

With each move from a higher level to a lower level, control content and processes are

progressively subdivided within a fixed range, and specific processes are described in lower

levels.

In the Structured project, hierarchical sequence programs are created with the configuration that

states the highest level as the project, followed by program files, tasks, and POUs (abbreviation

for Program Organization Units).

Project

POUsTask (Initialization)

Initial process

Lamp test

Program file (Operation preparation)

Task (Station A control)

Conveyor drive A

Data process A

Program file (Station A)

Task (Station B control)

Task (Indicator control)

Conveyor drive B

Data process B

Indicator output

Program file (Station B)

Initial process

Lamp test

Conveyor drive A

Conveyor drive B

Data process A

Data process B

Indicator output

2.2 What is a Structured Sequence Program?

2-3

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

2.2 What is a Structured Sequence Program?

A structured program is a program created by components. Processes in lower levels of

hierarchical sequence program are divided to several components according to their processing

information and functions.

In a structured program design, segmenting processes in lower levels as much as possible is

recommended.

Each component is designed to have a high degree of independence for easy addition and

replacement.

The following shows examples of the process that would be ideal to be structured.

• A process that is used repeatedly in a sequence program.

• A process that can be divided into components.

A process that is used repeatedly in a sequence program

Control content in
a programmable controller CPU

Control content in
a programmable controller CPU

Calls Process A

Calls Process A

Calls Process A

DIV

MUL

DIV

MUL

DIV

DIV

MUL

MUL Process A

Structured
program

Divided

Divided

Control 1

Control a

Structured
programControl b

Control c

Control d

Control 2

A process that can be divided into components

Control
content
in a
programmable
controller
CPU

Divided

2-4

MEMO

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

3

3-1

PROCEDURE FOR CREATING PROGRAMS

3.1 Procedure for Creating Sequence Programs in Structured Project 3-2

3-2 3.1 Procedure for Creating Sequence Programs in Structured Project

3.1 Procedure for Creating Sequence Programs in
Structured Project

This section explains the basic procedure for creating a sequence program in the Structured

project.

(1) Creating the program configuration

(2) Creating POUs

(3) Setting the programs

(4) Compiling the programs

Procedure

Create program files.

Create tasks.

Procedure

Create POUs.

Define global labels.

Define local labels.

Edit the programs of each POU.

Procedure

Register the POUs in the tasks.

Procedure

Compile the programs.

Creating the program
configuration Creating POUs Setting the programs

Compiling
the programs

Program file POU

Task 1

Task 2

Program file

Task 1

Task 2

Program 1

Program 2

Program 3

Program 4

Function block 1

Function block 2

Function 1

Function 2

Sequence
program

Program 1

Program 2

Program 3

Program 4

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

4

4-1

PROGRAM CONFIGURATION

4.1 Overview of Program Configuration . 4-2

4.2 POUs . 4-5

4.3 Labels . 4-15

4.4 Method for Specifying Data . 4-21

4.5 Device and Address . 4-38

4.6 Index Setting. 4-43

4.7 Libraries . 4-55

4.8 Precautions on Assigning a Name . 4-57

4-2 4.1 Overview of Program Configuration

4.1 Overview of Program Configuration

A sequence program created in the Structured project is composed of program files, tasks, and

POUs.

For details of program components, refer to the following sections.

For projects: Section 4.1.1 Project

For program files: Section 4.1.2 Program files

For tasks: Section 4.1.3 Tasks

For POUs: Section 4.2 POUs

The following figure shows the configuration of program files, tasks, and POUs in the project.

Project

Program file 2

POU
Program

POU
Program

POU
Program

Task

Program file 1

POU
Program

POU
Program

Task

POU
Program

POU
Program

Task

Program file n

POU
Program

POU
Program

Task

POU
Program

Task

4.1 Overview of Program Configuration
4.1.1 Project

4-3

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.1.1 Project
A project is a generic term for data (such as programs and parameters) to be executed in a

programmable controller CPU.

One or more program files need to be created in a project.

4.1.2 Program files
One or more tasks need to be created in a program file. (Created tasks are executed under the

control of the program file.)

The execution types (such as scan execution and fixed scan execution) for executing program

files in a programmable controller CPU are set in the program setting of the parameter.

For details of the execution types set in the parameter, refer to the user's manual for the CPU

module used.

Program file 2Program file 2Program file 1Program file 1 Program file nProgram file n

Project

Program file 2

POU
Program

POU
Program

POU
Program

Task

Program file 1

POU
Program

POU
Program

Task

POU
Program

POU
Program

Task

Program file n

POU
Program

POU
Program

Task

POU
Program

Task

4-4 4.1 Overview of Program Configuration
4.1.3 Tasks

4.1.3 Tasks
A task is an element that contains multiple POUs, and it is registered to a program file.

One or more programs of POU need to be registered in a task. (Functions and function blocks

cannot be registered in a task.)

(1) Task executing condition

The executing conditions in a programmable controller CPU are set for each task that is
registered to program files. Executing processes are determined for each task by setting the
executing condition.

The following are the types of task executing condition.

(a) Always (Default executing condition)

Executes registered programs for each scan.

(b) Event

Executes tasks when values are set to the corresponding devices or labels.

(c) Interval

Executes tasks in a specified cycle.

A priority can be set for each task execution.

● Priority

When executing conditions of multiple tasks are met simultaneously, the tasks are

executed according to the set priority.

Tasks are executed in the order from the smallest priority level number.

Tasks set with a same priority level number are executed in the order of task data name.

TaskTaskTaskTask

TaskTask

TaskTask

TaskTask

Project

Program file 2

POU
Program

POU
Program

POU
Program

Task

Program file 1

POU
Program

POU
Program

Task

POU
Program

POU
Program

Task

Program file n

POU
Program

POU
Program

Task

POU
Program

Task

4.2 POUs
4.2.1 Types of POU

4-5

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2 POUs

A POU (abbreviation for Program Organization Unit) is a program component defined by each

function.

4.2.1 Types of POU
The following three types can be selected for each POU according to the content to be defined.

• Program

• Function

• Function block

Each POU consists of a program and local labels*1.

A process can be described in a programming language that suits the control function for each

POU.

*1: Local labels are labels that can be used only in programs of declared POUs. For details
of local labels, refer to the following section.

 Section 4.3.2 Local labels

ProjectProject

Program fileProgram file

TaskTask

Project

Program file

Task

POU folder

POU

Program

POU

Program

POU

Function

POU

Function block

Registration

4-6 4.2 POUs
4.2.2 Program

4.2.2 Program
A program is an element that is stated at the highest level of POU.

Functions, function blocks, and operators are used to edit programs.

Sequence programs executed in a programmable controller CPU are created by programs of

POU.

For a simplest sequence program, only one program needs to be created and registered to a

task in order to be executed in a programmable controller CPU.

Programs can be described in the ST or structured ladder/FBD language.

4.2.3 Functions
Functions and operators are used to edit functions.

Functions can be used by calling them from programs, functions, or function blocks.

Functions always output same processing results for same input values.

By defining simple and independent algorithms that are frequently used, functions can be reused

efficiently.

Functions can be described in the ST or structured ladder/FBD language.

Program

Operator

Function block

Function

Operator

Function Function

4.2 POUs
4.2.4 Function blocks

4-7

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.4 Function blocks
Functions, function blocks, and operators are used to edit function blocks.

Function blocks can be used by calling them from programs or function blocks. Note that they

cannot be called from functions.

Function blocks can retain the input status since they can store values in internal and output

variables. Since they use retained values for the next processing, they do not always output the

same results even with the same input values.

Function blocks can be described in the ST or structured ladder/FBD language.

● Instantiation

Function blocks need to be instantiated to be used in programs.
For details of instantiation, refer to the following section.

 Section 4.2.8 Functions and function blocks

Instances are variables representing devices assigned to labels of function

blocks.

Devices are automatically assigned when instances are created with local labels.

4.2.5 Operators
Operators can be used by calling them from programs, functions, or function blocks.

Operators cannot be edited.

Operators always output same processing results for the same input values.

Function block

Operator

Function block

Function

4-8 4.2 POUs
4.2.6 Ladder blocks

4.2.6 Ladder blocks
In the structured ladder/FBD language, a program is divided into units of ladder blocks.

In the ST language, ladder blocks are not used.

● Ladder block labels

A ladder block label can be set to a ladder block. A ladder block label is used to indicate a
jump target for the Jump instruction.

 Ladder block label Ladder blockJump instruction

4.2 POUs
4.2.7 Programming languages for POUs

4-9

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.7 Programming languages for POUs
Two types of programming language are available for programs of POU.

The following explains the features of each programming language.

(1) ST: Structured text

Control syntax such as selection branch by conditional syntax or repetitions by iterative
syntax can be described in the structured text language, as in the high-level language such
as C language. Clear and simple programs can be written by using these syntax.

(2) Structured ladder/FBD: (ladder diagram)

The structured ladder or FBD is a graphical language developed based on the relay ladder
programming technique. They are commonly used for the sequence programming because
they can be understood intuitively.

 • Structured ladder

 • FBD

4-10 4.2 POUs
4.2.8 Functions, function blocks, and operators

4.2.8 Functions, function blocks, and operators
The following table shows differences among functions, function blocks, and operators.

Table 4.2.8-1 Differences among functions, function blocks, and operators

(1) Output variable assignment

A function always outputs a single operation result. A function that does not output any
operation result or outputs multiple operation results cannot be created.
A function block can output multiple operation results. It also can be created without any
output.
An operator always outputs a single operation result. It cannot be edited.

Table 4.2.8-2 Output variable assignment

Item Function Function block Operator

Output variable assignment Cannot be assigned Can be assigned Cannot be assigned

Internal variable Not used Used Not used

Creating instances Not necessary Necessary Not necessary

Function Function block Operator

Example

Outputs one
operation result

Outputs multiple
operation results

Without any output

Outputs multiple

Outputs one
operation result

4.2 POUs
4.2.8 Functions, function blocks, and operators

4-11

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(2) Internal variables

A function does not use internal variables. It uses devices assigned directly to each input
variable and repeats operations.

(a) A program that outputs the total of three input variables (When using a function (FUN1))

A function block uses internal variables. Different devices are assigned to the internal
variables for each instance of function blocks.

(b) Programs that output the total of three input variables (When using function blocks)

D120

X0

D109

D110

D111

D109

D110

FUN1

D111

Function

D13 D13

Instance A

Function block Function block

Instance B

D10

D11

D12

D6200

D6201

D6203

D6202

D10

D11

D12

D6210

D6211

D6213

D6212

4-12 4.2 POUs
4.2.8 Functions, function blocks, and operators

(3) Creating instances

When using function blocks, create instances to reserve internal variables.
Variables can be called from programs and other function blocks by creating instances for
function blocks.

To create an instance, declare as a label in a global label or local label of POU that uses
function blocks. Same function blocks can be instantiated with different names in a single
POU.

Function blocks perform operations using internal variables assigned to each instance.

If the same function is called in the circuit multiple times, the value of internal

variables or output variables is overwritten everytime the function is called. To

hold the value of internal variables or output variables when the function is called,

edit programs to use function blocks or to save the values as different valuables.

D13

D13 D13

Uses same internal variables
for same instances

Uses different internal variables
for different instances

Function block

Instance A

Function block Function block

Instance A Instance B

D10

D11

D12

D6200

D6201

D6203

D6204D6202

D10

D11

D12

D6200

D6201

D6203

D6204D6202

D10

D11

D12

Input label1

Input label1

Input label1

Input label1

Input label2

Input label3

Input label1

Input label2

Input label3 Local label

Output label

Output label

Local label

Output label

D6210

D6211

D6213

Local label

D6214D6212

4.2 POUs
4.2.9 EN and ENO

4-13

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.9 EN and ENO
An EN (enable input) and ENO (enable output) can be appended to a function and function block

to control their execution.

A Boolean variable used as an executing condition of a function is set to an EN.

A function with an EN is executed only when the executing condition of the EN is TRUE.

A Boolean variable used as an output of function execution result is set to an ENO.

The following table shows the status of ENO and the operation result according to the status of

EN.

Table 4.2.9-1 Status of ENO and the operation result according to the status of EN

1. A setting of an output label to an ENO is not essential.
2. As for application functions, functions with an EN are shown as ‘Function

name_E’.

EN ENO Operation result

TRUE (Operation execution)
TRUE (No operation error) Operation output value

FALSE (Operation error) Undefined value

FALSE (Operation stop) FALSE Undefined value

4-14 4.2 POUs
4.2.9 EN and ENO

● Usage example of EN and ENO

No Control description

➀

When the EN input is directly connected from the left power rail, the EN input is always TRUE and

the instruction is always executed.

If the ADD_E instruction is used in this manner, the operation result is the same as the ADD

instruction without the EN input.

➁
When Variable_1 is connected to the EN input, the instruction is executed when Variable_1 is

TRUE.

➂
When the result of Boolean operation is connected to the EN input, the instruction is executed

when the result of Boolean operation is TRUE.

➃
When the ENO outputs are connected to the EN inputs, three instructions are executed when

Variable_1 is TRUE.

➄ When the ENO outputs are not connected, the execution result of the instruction is not output.

4.3 Labels
4.3.1 Global labels

4-15

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.3 Labels

Labels include global labels and local labels.

4.3.1 Global labels
The global labels are labels that can be used in programs and function blocks.

In the setting of a global label, a label name, a class, a data type, and a device are associated

with each other.

4.3.2 Local labels
The local labels are labels that can be used only in declared POUs. They are individually defined

per POU.

In the setting of a local label, a label name, a class, and a data type are set.

For the local labels, the user does not need to specify devices. Devices are assigned

automatically at compilation.

4-16 4.3 Labels
4.3.3 Label classes

4.3.3 Label classes
The label class indicates from which POU and how a label can be used. Different classes can be

selected according to the type of POU.

The following table shows label classes.

Table 4.3.3-1 Label classes

*1: Not supported by FXCPU.

 • Input variables, output variables, and input/output variables

VAR_INPUT is an input variable for functions and function blocks, and

VAR_OUTPUT is an output variable for function blocks.

VAR_IN_OUT can be used for both input and output variables.

Class Description

Applicable POU

Program Function
Function

block

VAR_GLOBAL
Common label that can be used in programs and function

blocks

VAR_GLOBAL_

CONSTANT

Common constant that can be used in programs and function

blocks

VAR
Label that can be used within the range of declared POUs

This label cannot be used in other POUs.

VAR_CONSTANT
Constant that can be used within the range of declared POUs

This constant cannot be used in other POUs.

VAR_RETAIN*1

Latch type label that can be used within the range of declared

POUs

This label cannot be used in other POUs.

VAR_INPUT
Label that receives a value

This label cannot be changed in a POU.

VAR_OUTPUT Label that outputs a value from a function block

VAR_IN_OUT

Local label that receives a value and outputs the value from a

POU

This label can be changed in a POU.

VAR_INPUT VAR_OUTPUT

VAR_IN_OUT

4.3 Labels
4.3.4 Setting labels

4-17

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.3.4 Setting labels
Labels used in a program require setting of either global label or local label.

The following describes setting examples of the arguments g_int1 and g_int2 of the DMOV

instruction.

● Using the arguments of the DMOV instruction as global labels

Set the Class, Label Name, Data Type, Device, and Address.

● Using the arguments of the DMOV instruction as local labels

Set the Class, Label Name, and Data Type.

X0 DMOV
EN ENO

ds g_int2g_int1

4-18 4.3 Labels
4.3.5 Data types

4.3.5 Data types
Labels are classified into several data types according to the bit length, processing method, or

value range.

(1) Elementary data types

The following data types are available as the elementary data type.*1

 • Boolean type (bit): Represents the alternative status, such as ON or OFF.

 • Bit string type (word (unsigned)/16-bit string, double word (unsigned)/32-bit string):
Represents bit arrays.

 • Integer type (word (signed), double word (signed)): Handles positive and negative integer
values.

 • Real type (single-precision real, double-precision real): Handles floating-point values.

 • String type (character string): Handles character strings.

 • Time type (time): Handles numeric values as day, hour, minute, and second (in
millisecond).

Table 4.3.5-1 Elementary data types

*1: The following data types cannot be used for the structured ladder/FBD/ST language.
They can be only used for the ladder language.

• Timer data type: Handles programmable controller CPU timer devices (T).
• Retentive timer data type: Handles programmable controller CPU retentive timer devices (ST).
• Counter data type: Handles programmable controller CPU counter devices (C).
• Pointer data type: Handles programmable controller CPU pointer devices (P).

*2: The FX3S, FX3G, FX3GC, FX3U, and FX3UC support this data type.
*3: The Universal model QCPU and the LCPU support this data type.
*4: The FX3U and FX3UC support this data type.
*5: This data type is used in time type operation instructions of application function.

For details of the application functions, refer to the following.

 MELSEC-Q/L Structured Programming Manual (Application Functions)

 FXCPU Structured Programming Manual [Application Functions]

Elementary data type Description Value range Bit length

Bit Boolean 0 (FALSE), 1 (TRUE) 1 bit

Word (signed) Integer -32768 to 32767 16 bits

Double word

(signed)
Double-precision integer -2147483648 to 2147483647 32 bits

Word (unsigned)/16-bit string 16-bit string 0 to 65535 16 bits

Double word (unsigned)/32-bit

string
32-bit string 0 to 4294967295 32 bits

Single-precision real*2 Real -2128 to -2-126, 0, 2-126 to 2128 32 bits

Double-precision real*3 Double-precision real -21024 to -2-1022, 0, 2-1022 to 21024 64 bits

String*4 Character string Maximum 255 characters Variable

Time*5 Time value
T#-24d20h31m23s648ms to

T#24d20h31m23s647ms
32 bits

4.3 Labels
4.3.5 Data types

4-19

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(2) Generic data types

Generic data type is the data type of labels summarizing some elementary data types. Data
type name starts with 'ANY'.

ANY data types are used when multiple data types are allowed for function arguments and
return values.
Labels defined in generic data types can be used in any sub-level data type.
For example, if the argument of a function is ANY_NUM data type, desired data type for an
argument can be specified from word (signed) type, double word (signed) type, single-
precision real type, and double-precision real type.

Arguments of functions and instructions are described using generic data types, in order to
be used for various different data types.

The following figure shows the types of generic data type and their corresponding
elementary data types.

*1: For arrays, refer to the following section. Section 4.4.7 Arrays
*2: For structures, refer to the following section. Section 4.4.8 Structures

The higher 'ANY' data types include sub-level data types.
The highest 'ANY' data type includes all data types.

Word
(unsigned)/
16-bit string

Word
(signed)

ANY_REAL ANY_INT

Single-
precision

real

Double-
precision

real

ANY_NUM

ANY16 ANY32

Word
(signed)

Double
word

(signed)

ANY_BIT

ANY_SIMPLE

ANY

Time String

Array*1 Structure*2

Bit

Word
(unsigned)/
16-bit string

Double word
(unsigned)/
32-bit string

Double word
(unsigned)/
32-bit string

Double
word

(signed)

4-20 4.3 Labels
4.3.6 Expressing methods of constants

4.3.6 Expressing methods of constants
The following table shows the expressing method for setting a constant to a label.

Table 4.3.6-1 Constant expressing method

Constant

type
Expressing method Example

Bool Input FALSE or TRUE, or input 0 or 1. TRUE, FALSE

Binary Append '2#' in front of a binary number. 2#0010, 2#01101010

Octal Append '8#' in front of an octal number. 8#0, 8#337

Decimal Directly input a decimal number, or append 'K' in front of a decimal number. 123, K123

Hexadecimal
Append '16#' or 'H' in front of a hexadecimal number.

When a lowercase letter 'h' is appended, it is converted to uppercase automatically.
16#FF, HFF

Real number Directly input a real number, or append 'E' in front of a real number. 2.34, E2.34

Character

string
Enclose a character string with single quotations (') or double quotations ("). 'ABC', "ABC"

Time Append ‘T#’ in front.
T#1h,

T#1d2h3m4s5ms

4.4 Method for Specifying Data

4-21

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4 Method for Specifying Data

The following shows the six types of data that can be used for instructions in CPU modules.

Word (Signed) data

Data that can be handled by
CPU module

Bit data

Numeric data

Time data

Integer data

Real number data Single-precision
real data

Double-precision
real data

Double word (Signed) data

Character string data

........ Section 4.4.2

...................... Section 4.4.1

 Section 4.4.4 (1)

 Section 4.4.4 (2)

 .. Section 4.4.3

.... Section 4.4.5

....Section 4.4.6

4-22 4.4 Method for Specifying Data
4.4.1 Bit data

4.4.1 Bit data
Bit data are data handled in units of 1 bit, such as contacts and coils.

'Bit devices' and 'bit-specified word device' can be used as bit data.

(1) Using bit devices
A bit device is specified in unit of one point.

(2) Using word devices

(a) By specifying a bit number for a word device, 1/0 of the specified bit number can be

used as bit data.

(b) Specify a bit device of word device as ' . '. (Bit number is

specified in hexadecimal.)

For example, bit 5 (b5) of D0 is specified as D0.5 and bit 10 (b10) of D0 is specified as

D0.A. Note that bit specifications are not applicable for timers (T), retentive timers (ST),

counters (C), and index registers (Z). (Example: Z0.0 is not available).

For FXCPU, bit specification of a word device can be used for FX3U and FX3UC.

M0 SET
EN ENO

d Y10

One point of Y10 is
the target bit device

One point of M0 is
the target bit device

b15 b0

1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

 to

Word device

Each bit of a word device can be
used (1=ON, 0=OFF)

Word device Bit number

Bit-specified word device

(Turns ON/OFF according to the
status (1/0) of bit 5 (b5) of D0)

Bit-specified word device

(Turns ON bit 5 (b5) of D0)
M0 SET

EN ENO
d D0.5

D0.5 SET
EN ENO

d Y10

4.4 Method for Specifying Data
4.4.2 Word (16 bits) data

4-23

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.2 Word (16 bits) data
Word data are 16-bit numeric value data used in basic instructions and application instructions.

The following shows the two types of word data that can be handled in CPU modules.

• Decimal constants -32768 to 32767

• Hexadecimal constants 0000H to FFFFH

For word data, word devices and digit-specified bit device can be used.

Note that word data cannot be specified using digit specification for direct access inputs (DX) and

direct access outputs (DY). (For direct access inputs and direct access outputs, refer to the

User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.)

(1) Using bit devices

(a) By specifying digits of bit devices, word data can be used.

Specify digits of bit data as ' '. Digits can be

specified in the range from K1 to K4 in unit of 4 points (4 bits). (For a link direct device,

specify as 'J \ '. To specify X100 to

X10F of Network No.2, specify as J2\K4X100.)

The following are the examples of the target points when digits are specified for X0.

QCPU (Q mode)/LCPU

 • K1X0....... 4 points of X0 to X3

 • K2X0....... 8 points of X0 to X7

 • K3X0....... 12 points of X0 to XB

 • K4X0....... 16 points of X0 to XF

FXCPU

For FXCPU, the device numbers of input/output (X, Y) is assigned in octal.

 • K1X0....... 4 points of X0 to X3

 • K2X0....... 8 points of X0 to X7

 • K3X0....... 12 points of X0 to X13

 • K4X0....... 16 points of X0 to X17

Figure 4.4.2-1 Digit specification setting range of word data (16 bits)

Number of digits Start number of bit device

Network No. Number of digits Start number of bit device

XF

K1 specification
range

(4 points)

K2 specification range

(8 points)

K3 specification range

(12 points)

K4 specification range

(16 points)

XC XB X8 X7 X4 X3 X0 to to to to

4-24 4.4 Method for Specifying Data
4.4.2 Word (16 bits) data

(b) The following table shows the numeric values that can be used as source data when

digits are specified at the source .

Table 4.4.2-2 List of digit specification and numeric values that can be used

(c) When the destination is a word device

For the word device at the destination side, 0s are stored as the status of bit devices

which follow the digit-specified bit devices at the source side.

Figure 4.4.2-2 Ladder example and processing details

(d) When digits are specified at the destination , the points by digit specification are the

target of destination.

The status of bit devices which follow the digit-specified bit devices is not changed.

Figure 4.4.2-3 Ladder example and processing details

Number of specified

digits
Value range

K1 (4 points) 0 to 15

K2 (8 points) 0 to 255

K3 (12 points) 0 to 4095

K4 (16 points) 32768 to 32767

Ladder example Processing

Instruction that processes 16-bit data

Ladder example Processing

When the source is a numeric value

When the source is a word device

s

0 0 X3

b0

D0

K1X0

b1b2b3

0 0 0 0 0 0 0 0 0 0 X2 X1 X0

0s are stored

X3 X2 X1 X0

b15 b4

X010 MOV
EN ENO

ds D0K1X0

Source s

d

s

M15 M8

0 0 1 1 0 1 0 0

M7 M0

Not changed

K2M0

0 0 1 1 0 1 0 0H1234 0 0100 100

3 4

3 41 2

X010 MOV
EN ENO

ds K2M0H1234

Destination d

s

1

M107

0 0 1 1 1 0 1

M100

Not changed

K2M100

b15 b8

1 0 0 1 1 1 0 1

b7 b0

D0 1 0011 101

M115 M108

X010 MOV
EN ENO

ds K2M100D0

Destination d

4.4 Method for Specifying Data
4.4.2 Word (16 bits) data

4-25

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(2) Using word devices
A word device is specified in unit of one point (16 bits).

1. When performing the process with digit specification, a desired value can be
used for the start device number of bit devices.

2. Digits cannot be specified for direct access inputs/outputs (DX, DY).

X010 MOV
EN ENO

ds D0100

One point (16 bits) of D0
is the target word device

4-26 4.4 Method for Specifying Data
4.4.3 Double word (32 bits) data

4.4.3 Double word (32 bits) data
Double word data are 32-bit numeric value data used in basic instructions and application
instructions.

The following shows the two types of double word data that can be handled in CPU modules.

• Decimal constants -2147483648 to 2147483647

• Hexadecimal constants 00000000H to FFFFFFFFH

For double word data, word devices and digit specification for bit devices can be used.

Note that double word data cannot be specified using digit specification for direct access inputs
(DX) and direct access outputs (DY).

(1) Using bit devices

(a) By specifying digits of bit devices, double word data can be used.

Specify digits of bit data as ' '. (For a link direct

device, specify as 'J \ '. To specify
X100 to X11F of Network No.2, specify as J2\K8X100.)
Digits cannot be specified in the range from K1 to K8 in unit of 4 points (4 bits).
The following are the examples of the target points when digits are specified for X0.

QCPU (Q mode)/LCPU

FXCPU

For FXCPU, the device numbers of input/output (X, Y) is assigned in octal.

Figure 4.4.3-1 Digit specification setting range of double word data (32 bits)

 • K1X0 4 points of X0 to X3 • K5X0...... 20 points of X0 to X13

 • K2X0 8 points of X0 to X7 • K6X0...... 24 points of X0 to X17

 • K3X0 12 points of X0 to XB • K7X0...... 28 points of X0 to X1B

 • K4X0 16 points of X0 to XF • K8X0...... 32 points of X0 to X1F

 • K1X0 4 points of X0 to X3 • K5X0...... 20 points of X0 to X23

 • K2X0 8 points of X0 to X7 • K6X0...... 24 points of X0 to X27

 • K3X0 12 points of X0 to X13 • K7X0...... 28 points of X0 to X33

 • K4X0 16 points of X0 to X17 • K8X0...... 32 points of X0 to X37

Number of digits Start number of bit device

Network No. Number of digits Start number of bit device

X1F X1C X1B X18 X17 X14 X13 X10 XF XCXB X8 X7 X4 X3 X0

K1
specification
range

(4 points)
K2 specification
range
(8 points)

K3 specification range

(12 points)

K4 specification range

(16 points)

K5 specification range
(20 points)

K6 specification range
(24 points)

K7 specification range

(28 points)

K8 specification range

(32 points)

4.4 Method for Specifying Data
4.4.3 Double word (32 bits) data

4-27

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(b) The following table shows the numeric values that can be used as source data when

digits are specified at the source .

Table 4.4.3-1 List of digit specification and numeric values that can be used

(c) When the destination is a word device

For the word device at the destination side, 0s are stored as the status of bit devices

which follow the digit-specified bit devices at the source side. (Data_s:K1X0,

Data_d:D0)

Figure 4.4.3-2 Ladder example and processing details

(d) When digits are specified at the destination , the points by the specified digit are the

target of destination. (Data_d1:K5M0, Data_d2:K5M10, Data_s:D0)

The status of bit devices which follow the digit-specified bit devices is not changed.

Figure 4.4.3-3 Ladder example and processing details

Number of

specified digits
Value range

Number of specified

digits
Value range

K1 (4 points) 0 to 15 K5 (20 points) 0 to 1048575

K2 (8 points) 0 to 255 K6 (24 points) 0 to 16777215

K3 (12 points) 0 to 4095 K7 (28 points) 0 to 268435455

K4 (16 points) 0 to 65535 K8 (32 points) 2147483648 to 2147483647

Ladder example Processing

Instruction that processes 32-bit data

Ladder example Processing

When the source is a numeric value

When the source is a word device

s

0 0 X3

b0

D0

K1X0

b1b2b3

0 0 0 0 0 0 0 0 0 0 X2 X1 X0

0s are stored

X3 X2 X1 X0

0 0D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0s are stored

b31 b16

b15 b4
X10 DMOV

EN ENO
ds Data_dData_s

Source s

d

s

10 0 1010 0

00 1 00 011

100 0

M19 M16

Not changed

10 0 1010 010 0 1 1 10 0

1 00 0 001 1

10 0 1 1 10 0

3 4 5 6

7 8 1 2

H78123456

K5M0
M15 M8 M7 M0

M31 M20

X10 DMOV
EN ENO

ds Data_d1H78123456

Destination d

s

100 1 1 10 1
M17 M10

b15 b8
0

b7
01 1 0 1 1 1

b0
D1

110 1

Not changed

100 1 1 10 1
b7 b0

D0 1 0011 1 0 0

100 00 01 1

1 0011 1 0 0

b15 b8

M25 M18

M41 M30M29 M26

X10 DMOV
EN ENO

ds Data_d2Data_s

Destination d

4-28 4.4 Method for Specifying Data
4.4.3 Double word (32 bits) data

1. When performing the process with digit specification, a desired value can be
used for the start device number of bit devices.

2. Digits cannot be specified for direct access inputs/outputs (DX, DY).

(2) Using word devices

Devices used in lower 16 bits are specified for a word device.
'Specified device number' and 'specified device number +1' are used for instructions that
process 32-bit data.

M0 DMOV
EN ENO

ds D0100

Two points (32 bits) of D0 and D1
are the target word devices

Transfers 32-bit data

4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

4-29

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.4 Single-precision real/double-precision real data
Single-precision real/double-precision real data are 32-bit floating-point data used in basic
instructions and application instructions.

Real number data can be stored only in word devices.

For FXCPU, double-precision real data is not supported.

(1) Single-precision real (single-precision floating-point data)

Devices used in lower 16 bits are specified for instructions that use real number data.

Real number data are stored in 32 bits of 'specified device number' and 'specified device number +1'.

Remark

Floating-point data are represented by two word devices.

[Sign] 1. [Fraction] 2 [Exponent]

The following explains the bit configuration and its meaning when floating-point

data are internally represented.

 • Sign
b31 represents a sign.
0: Positive
1: Negative

 • Exponent

b23 to b30 represent n of 2n.
The values of n are as follows according to BIN values of b23 to b30.

 • Fraction
23 bits of b0 to b22 represent a value of XXXXXX... when the fraction is
expressed as 1.XXXXXX... in binary.

(2) Double-precision real (double-precision floating-point data)

Devices used in lower 16 bits are specified for instructions that use real number data.
Real number data are stored in 64 bits of 'specified device number' and 'specified device
number + 3'.

M0 EMOV
EN ENO

dsVar_R100 Var_D0

Two points (32 bits) of R100 and R101 are the target word devices

Two points (32 bits) of D0 and D1
are the target word devices

Transfers real number data

b31 b30 to b23 b22 b16 to b15 b0 to

b31

Sign

b23 to b30

Exponent

b0 to b22

Fraction

b23 to b30 FFH FEH FDH 81H 80H 7FH 7EH 02H 01H 00H

n Not used 127 126 2 1 0 -1 -125 -126 Not used

4-30 4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

Remark

1) Floating-point data are represented by four word devices.

[Sign] 1. [Fraction] 2 [Exponent]

The following explains the bit configuration and its meaning when floating-point

data are internally represented.

 • Sign

b63 represents a sign.

0: Positive

1: Negative

 • Exponent

b52 to b62 represent n of 2n.

The values of n are as follows according to BIN values of b52 to b62.

 • Fraction

52 bits of b0 to b51 represent a value of XXXXXX... when the fraction is

expressed as 1.XXXXXX... in binary.

M0 EDMOV
EN ENO

d Var_D0Var_R100

Four points (64 bits) of R100, R101, R102, and R103 are the target word devices

Four points (64 bits) of D0, D1, D2, and D3
are the target word devices

Transfers real number data

b63 b62 to b52 b51 b16to b15 b0to

b63

Sign

b52 to b62
Exponent

b0 to b51
Fraction

b52 to b62 7FFH 7FEH 7FDH 400H 3FFH 3FEH 3FCH 02H 01H 00H

n Not used 1023 1022 2 1 0

3FDH

-1 -2 -1021 -1022 Not used

4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

4-31

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(3) Precautions for when setting input values of single-precision real data/double-precision real
data from the programming tool

(a) Single-precision real

Single-precision real data are processed as 32-bit single precision in the programming

tool, and thus the number of significant figures becomes approximately 7. If the input

value of single-precision real data exceeds 7 digits, the 8th digit is rounded.

If the value after the rounding exceeds a value between -2147483648 and 2147483647,

an operation error occurs.

(b) Double-precision real

Double-precision real data are processed as 64-bit double precision in the programming

tool, and thus the number of significant figures becomes approximately 15. If the input

value of double-precision real data exceeds 15 digits, the 16th digit is rounded.

If the value after the rounding exceeds a value between -2147483648 and 2147483647,

an operation error occurs.

Example 1: When '2147483647' is set for the input value

8th digit '6' is rounded.
The value is handled as '2147484000'.

Example 2: When 'E1.1754943562' is set for the input value

8th digit '3' is rounded.
The value is handled as 'E1.175494'.

Example 1: When '2147483646.12345678' is set for the input value

16th digit '6' is rounded.
The value is handled as '2147483646.12346'.

Example 2: When 'E1.7976931348623157+307' is set for the input value

16th digit '5' is rounded.
The value is handled as 'E1.79769313486232+307'.

4-32 4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

1. Floating-point data in a CPU module can be monitored by the monitoring
function of the programming tool.

2. To express 0 in floating-point data, set all of the following bits to 0.
(a) Single-precision floating-point data: b0 to b31

(b) Double-precision floating-point data: b0 to b63

3. The setting range of real number is shown below:*1

(a) Single-precision floating-point data

2128 < Device  2-126, 0, 2-126  Device < 2128

(b) Double-precision floating-point data

21024  Device  2-1022, 0, 2-1022  Device  21024

4. Do not specify -0 (when only the highest bit of the floating-point real number is
1) for floating-point data. (A floating-point operation with -0 results an operation
error.)
For a CPU module that performs an internal operation of floating-point
operation with double precision, a floating-point operation does not result an
error since -0 is converted to 0 in a CPU module when -0 is specified.
For a CPU module that performs an internal operation of floating-point
operation with single precision, a floating-point operation results an error since
the process speed is given a priority and -0 is used for an operation as it is
when -0 is specified.

(a) The following is the CPU module in which the operation does not result

an error when -0 is specified.

 • High Performance model QCPU in which the internal operation is set

to double precision*2 (The default setting of internal floating-point

operation is double precision.)

(b) The following are the CPU modules in which the operation results an

error when -0 is specified.

 • Basic model QCPU*3

 • High Performance model QCPU in which the internal operation is set

to single precision*2

 • Process CPU

 • Redundant CPU

 • Universal model QCPU

 • LCPU

 • FXCPU*4

*1: For operations when an overflow or underflow is occurred, or when a special value is input, refer to the
following manuals.
• QCPU (Q mode)/LCPU

 User's Manuals (Function Explanation, Program Fundamentals) for the CPU module used.

• FXCPU

 User's manuals and Programming Manuals for the FXCPU used

*2: Switching between single precision and double precision of the internal floating-point operation is set in the
PLC system of the PLC parameter. For single precision and double precision of floating point operation, refer
to the User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.

*3: The floating point operation is supported with the Basic model QCPU with a serial number whose first five
digits are '04112' or higher.

*4: Only the FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U, and FX3UC support floating point operations.

4.4 Method for Specifying Data
4.4.5 String data

4-33

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.5 String data
String data are character data used in basic instructions and application instructions.

From the specified character to the NULL code (00H) that indicates the end of the character

string are the target string data.

(1) When the specified character is NULL code

The NULL code is stored by using one word.

(2) When the number of characters is an even number

Character string data and NULL code are stored by using the 'number of characters /2+1'
words.
For example, when 'ABCD' is transferred to word devices starting from D0, the character
string 'ABCD' is stored to D0 and D1, and the NULL code to D2. (The NULL code is stored to
the last one word).

(3) When the number of characters is an odd number

Character string data and NULL code are stored by using the 'number of characters /2'
words (Rounding the fractional part).
For example, when 'ABCDE' is transferred to word devices starting from D0, the character
string 'ABCDE' and the NULL code are stored to D0 to D2. (The NULL code is stored to the
higher 8 bits of the last one word).

M0 $MOV
EN ENO

ds Var_D0" "

D0 NULL

Specification of NULL code (00H)

Transfers character string data

"ABCD"

D0 42H

44H

41H

43H

NULL

D1

D2

Transfers character string data

Specification of a character string
composed of even numbers

M0 $MOV
EN ENO

ds Var_D0

"ABCDE"

D0

D1

D2

Transfers character string data

Specification of a character string
composed of odd numbers

M0 $MOV
EN ENO

ds Var_D0

42H

44H

41H

43H

NULL 45H

4-34 4.4 Method for Specifying Data
4.4.6 Time data

4.4.6 Time data
Time data are used in time type operation instructions of application functions.

Specify time data in the T#10d20h30m40s567ms form.

For example. the following adds ‘1 Day, 2 Hours, 3 Minutes, and 4 Seconds’ to ‘10 Days, 20

Hours, 30 Minutes, 40 Seconds, and 567 Milliseconds’.

Each value of time data can be specified within the following range.

Table 4.4.6-1 Allowable specification range of time data

For application functions, refer to the following manuals.

 MELSEC-Q/L Structured Programming Manual (Application Functions)

 FXCPU Structured Programming Manual [Application Functions]

Value Range

d (Day) 0 to 24

h (Hour) 0 to 23

m (Minute) 0 to 59

s (Second) 0 to 59

ms (Millisecond) 0 to 999

T#10d20h30m40s567ms g_time1

ADD_TIME
_IN1
_IN2

g_time2g_time1

T#1d2h3m4s

4.4 Method for Specifying Data
4.4.7 Arrays

4-35

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.7 Arrays
An array represents a consecutive aggregation of same data type labels.

Arrays can be defined by the elementary data types or structures.

(GX Works2 Version 1 Operating Manual (Structured Project))

The maximum number of arrays differs depending on the data types.

(1) Definition of arrays

The following table shows the format of definition.
Table 4.4.7-1 Form used to define array

(2) Expression of arrays

To identify individual labels of an array, append an index
enclosed by '[]' after the label name.
Values that can be specified for indexes are within the range
from -32768 to 32767.

For an array with two or more dimensions, delimit indexes in
'[]' by ','.
For the ST and structured ladder/FBD languages, labels (word (signed) or double word
(signed) data type) can be used for indexes as shown on the next page.
Note that Z0 or Z1 cannot be used in the programs if labels are used for indexes.

Number of

array

dimensions

Format Remarks

One

dimension

Array of elementary data type/structure name (array start value .. array end

value)

For elementary data types

 Section 4.3.5

For structured data types

 Section 4.4.8

(Definition example) Bit (0..2)

Two

dimensions

Array of elementary data type/structure name (array start value .. array end

value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1)

Three

dimensions

Array of elementary data type/structure name (array start value .. array end

value, array start value .. array end value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1, 0..3)

Label name

boolary1 [0]

[1]

[n]

boolary2 [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

One-dimensional array Two-dimensional array

Index Label name

[0,0]

Index

boolary1 [0] boolary2 [0.3]

Label name index

Example)

4-36 4.4 Method for Specifying Data
4.4.7 Arrays

[Structured ladder/FBD]

[ST]
FOR Index1:=0
 TO 4
 BY 1 DO
 INC(TRUE,Var_D0[Index1]);
END_FOR;

1. When a label or a device is specified for an array index, the operation is
performed with a combination of multiple sequence instructions. Therefore, if
an interruption occurs during the operation of the array label, an unintended
operation result may be produced.
When using interrupt programs, use interrupt disable/enable instructions (DI/EI

instructions) as necessary.

2. If the index*1 which is outside of the defined range is specified for an array
index, any of the following operations occur.
 •An operation error occurs.

 •A current value of other label is referred or written.
*1: For example, a value other than the value within 0 to 2 is used for the index of an array which

is declared with the bit array (0..2).

(3) Maximum number of array elements

The maximum number of array elements differs depending on data types as shown below.

Table 4.4.7-2 Maximum number of array

Data type Maximum number

Bit, word (signed), word (unsigned)/16-bit string, timer, counter, and retentive timer 32768

Double word (signed), double word (unsigned)/32-bit string, single-precision real, and time 16384

Double-precision real 8192

String 32768 divided by string length

4.4 Method for Specifying Data
4.4.8 Structures

4-37

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.8 Structures
A structure is an aggregation of different data type labels.

Structures can be used in all POUs.

To use structures, first create the configuration of structure, and define a structure label name for

the created structure as a new data type

(GX Works2 Version 1 Operating Manual (Structured Project))

To use each element of structure, append an element name after the structure label name with '.'

as a delimiter in between.

Structures can also be used as arrays. When a structure is declared as an array, append an

index enclosed by '[]' after the structure label name. When arrays are used and accessed using

array indices to specify a label or device, the maximum value in an array is 32767.

The arranged structured data can be specified as arguments of functions and function blocks.

When arrays are used and accessed using array indices to specify a label or device, a bit-

specified word device can not be specified for a bit type element.

dut_a1 . in00

Structure
label name

Element name

Example) When using the element
of the structured data

dut_b1 [0] . in00

Index Element
name

Structure
label name

Example) When using the element
of the arranged structured data

Bit bo00

Bit bo01

Word (signed) in00 dut_a1 samp_fb1

samp_fb1

Creating structures

Define labels

Structure name

Expression in a program

Structure nameStructure label name

Element

dut_a1.bo00 dut_a1.bo01

MOV
EN ENO

ds idata1dut_a1.in00

4-38 4.5 Device and Address
4.5.1 Device

4.5 Device and Address

This section explains the method for expressing programmable controller CPU devices. The

following two types of format are available.

• Device: This format consists of a device name and a device number.

• Address: A format defined in IEC61131-3. In this format, a device name starts with %.

4.5.1 Device
Device is a format that uses a device name and a device number.

For details of devices, refer to the following manuals.

 User's Manual (Function Explanation, Program

Fundamentals) for the CPU module used.

 FXCPU Structured Programming Manual [Device & Common]

Example)

X0 W35F

Device name Device number

4.5 Device and Address
4.5.2 Address

4-39

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.5.2 Address
Address is a format defined in IEC61131-3.

The following table shows details of format that conforms to IEC61131-3.

Table 4.5.2-1 Address definition specifications

*1: Not supported by FXCPU.

● Position

Position is a major class indicating the position to

which data are allocated in three types: input,

output, and internal.

The following shows the format rules

corresponding to the device format.

 • X, J\X (X device) : I (input)

 • Y, J\Y (Y device) : Q (output)

 • Other devices : M (internal)

● Data size

Data size is a class indicating the size of data.

The following shows the format rules corresponding to the device format.

 • Bit device : X (bit)

 • Word device : W (word), D (double word), L (long word)

● Classification

Classification is a minor class indicating the type of a device that cannot be identified

only by its position and size.

Devices X and Y do not support classification.

For the format corresponding to the device format, refer to the following section.

 Section 4.5.3 Correspondence between devices and addresses

Long words are used in double-precision real operation instructions of the

Universal model QCPU/LCPU.

Start
1st character:

position
2nd character: data size

3rd character and later:

classification
Number

%

I Input (Omitted) Bit Numeric characters used for

detailed classification

Use '.' (period) to delimit the

numbers from the subsequent

numbers.

A period may be omitted.

Number

corresponding to

the device

number (decimal

notation)

Q Output X Bit

M Internal

W Word (16 bits)

D Double word (32 bits)

L Long word (64 bits)*1

Example)

X0%I %MX1 . 863

Position Data

size
Classification Number

4-40 4.5 Device and Address
4.5.3 Correspondence between devices and addresses

4.5.3 Correspondence between devices and addresses
This section explains the correspondence between devices and addresses.

(1) Correspondence between devices and addresses

The following table shows the correspondence between devices and addresses.

(a) QCPU (Q mode)/LCPU

Table 4.5.3-1 Correspondence between devices and addresses (1/2)

Device
Expressing method

Example of correspondence between

device and address

Device Address Device Address

Input X Xn %IXn X7FF %IX2047

Output Y Yn %QXn Y7FF %QX2047

Internal relay M Mn %MX0.n M2047 %MX0.2047

Latch relay L Ln %MX8.n L2047 %MX8.2047

Annunciator F Fn %MX7.n F1023 %MX7.1023

Special relay SM SMn %MX10.n SM1023 %MX10.1023

Function input FX FXn None FX10 None

Function output FY FYn None FY10 None

Edge relay V Vn %MX9.n V1023 %MX9.1023

Direct access input DX DXn %IX1.n DX7FF %IX1.2047

Direct access output DY DYn %QX1.n DY7FF %QX1.2047

T
im

er

Contact TS Tn %MX3.n TS511 %MX3.511

Coil TC Tn %MX5.n TC511 %MX5.511

Current value TN Tn
%MW3.n

%MD3.n

TN511

T511

%MW3.511

%MD3.511

C
ou

nt
e

r

Contact CS Cn %MX4.n CS511 %MX4.511

Coil CC Cn %MX6.n CC511 %MX6.511

Current value CN Cn
%MW4.n

%MD4.n

CN511

C511

%MW4.511

%MD4.511

R
et

en
tiv

e
tim

er Contact STS STn %MX13.n STS511 %MX13.511

Coil STC STn %MX15.n STC511 %MX15.511

Current value STN STn
%MW13.n

%MD13.n

STN511

ST511

%MW13.511

%MD13.511

Data register D Dn
%MW0.n

%MD0.n
D11135

%MW0.11135

%MD0.11135

Special register SD SDn
%MW10.n

%MD10.n
SD1023

%MW10.1023

%MD10.1023

Function register FD FDn None FD0 None

Link relay B Bn %MX1.n B7FF %MX1.2047

Link special relay SB SBn %MX11.n SB3FF %MX11.1023

Link register W Wn
%MW1.n

%MD1.n
W7FF

%MW1.2047

%MD1.2047

Link special register SW SWn
%MW11.n

%MD11.n
SW3FF

%MW11.1023

%MD11.1023

Intelligent function

module device
G Ux\Gn

%MW14.x.n

%MD14.x.n
U0\G65535

%MW14.0.65535

%MD14.0.65535

File register R Rn
%MW2.n

%MD2.n
R32767

%MW2.32767

%MD2.32767

Pointer P Pn "" (Null character) P299 None

Interrupt pointer I In None - -

Nesting N Nn None - -

Index register Z Zn
%MW7.n

%MD7.n
Z9

%MW7.9

%MD7.9

4.5 Device and Address
4.5.3 Correspondence between devices and addresses

4-41

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

Table 4.5.3-1 Correspondence between devices and addresses (2/2)

(b) FXCPU

Table 4.5.3-2 Correspondence between devices and addresses

Device
Expressing method

Example of correspondence between

device and address

Device Address Device Address

Step relay S Sn %MX2.n S127 %MX2.127

SFC transition device TR TRn %MX18.n TR3 %MX18.3

SFC block device BL BLn %MX17.n BL3 %MX17.3

Link input

J

Jx\Xn %IX16.x.n J1\X1FFF %IX16.1.8191

Link output Jx\Yn %QX16.x.n J1\Y1FFF %QX16.1.8191

Link relay Jx\Bn %MX16.x.1.n J2\B3FFF %MX16.2.1.16383

Link register Jx\Wn
%MW16.x.1.n

%MD16.x.1.n
J2\W3FFF

%MW16.2.1.16383

%MD16.2.1.16383

Link special relay Jx\SBn %MX16.x.11.n J2\SB1FF %MX16.2.11.511

Link special register Jx\SWn
%MW16.x.11.n

%MD16.x.11.n
J2\SW1FF %MW16.2.11.511

File register ZR ZRn
%MW12.n

%MD12.n
ZR32767

%MW12.32767

%MD12.32767

Device
Expressing method

Example of correspondence between

device and address

Device Address Device Address

Input X Xn %IXn X367 %IX247

Output Y Yn %QXn Y367 %QX247

Auxiliary relay M Mn %MX0.n M499 %MX0.499

T
im

er

Contact TS Tn %MX3.n TS191 %MX3.191

Coil TC Tn %MX5.n TC191 %MX5.191

Current value TN Tn
%MW3.n

%MD3.n

TN191

T190

%MW3.191

%MD3.190

C
o

un
te

r

Contact CS Cn %MX4.n CS99 %MX4.99

Coil CC Cn %MX6.n CC99 %MX6.99

Current value CN Cn
%MW4.n

%MD4.n

CN99

C98

%MW4.99

%MD4.98

Data register D Dn
%MW0.n

%MD0.n

D199

D198

%MW0.199

%MD0.198

Intelligent function

module device
G Ux\Gn

%MW14.x.n

%MD14.x.n
U0\G09

%MW14.0.10

%MD14.0.9

Extension register R Rn
%MW2.n

%MD2.n

R32767

R32766

%MW2.32767

%MD2.32766

Extension file register ER ERn None  

Pointer P Pn "" (Null character) P4095 None

Interrupt pointer I In None  

Nesting N Nn None  

Index register
Z Zn

%MW7.n

%MD7.n

Z7

Z6

%MW7.7

%MD7.6

V Vn %MV6.n V7 %MW6.7

State S Sn %MX2.n S4095 %MX2.4095

4-42 4.5 Device and Address
4.5.3 Correspondence between devices and addresses

(2) Digit specification of bit devices

The following table shows the correspondence between devices and addresses when
specifying digits of bit devices.

Table 4.5.3-3 Correspondence of formats with digit specification

 • Correspondence examples

(3) Bit specification of word device

The following table shows the correspondence between devices and addresses when
specifying a bit device of word device.

Table 4.5.3-4 Correspondence of formats with bit specification

 • Correspondence examples

 • Index setting, digit specification of bit devices, and bit specification of word

device

Index setting, digit specification of bit devices, and bit specification of word

device cannot be applied to labels.

Device Address

K[Number of digits][Device name][Device number]

(Number of digits: 1 to 8)

%[Position of memory area][Data size]19.[Number of

digits].[Classification].[Number]

(Number of digits: 1 to 8)

Device Address

K1X0 %IW19.1.0

K4M100 %MW19.4.0.100

K8M100 %MD19.8.0.100

K2Y7E0 %QW19.2.2016

Device Address

[Device name][Device number].[Bit number]

(Bit number: 0 to F)

%[Position of memory area]X[Classification].[Device

number].[Bit number]

Device Address

D11135.C %MX0.11135.12

SD1023.F %MX10.1023.15

4.6 Index Setting

4-43

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.6 Index Setting

(1) Overview of the index setting

(a) The index setting is an indirect setting that uses index registers.
When the index setting is used in a sequence program, the device consists of ‘directly
specified device number’ + ‘content of index register’.
For example, when D2Z2 is specified and the value of Z2 is 3, D(2+3)=D5 is set as the
target.

(b) For Universal model QCPU, LCPU, and FXCPU, indexes can be set in 32-bit range in

addition to 16-bit range.

(2) 16-bit index setting

(a) Setting an index in 16-bit range

Values from -32768 to 32767 can be set to index registers*1.
The following shows how the index is set.

*1 For the index setting, refer to the user's manual (function explanation, program
fundamentals) for the CPU module used.

(b) Devices that can be used for the index setting (for QCPU (Q mode), LCPU)

The index setting can be applied to devices used by contacts, coils, basic instructions,
and application instructions except for the restrictions listed in the tables below. The
index setting cannot be applied to labels.

1) Devices that cannot be used for the index setting

*2: SFC transition devices and SFC block devices are devices
for SFC programs. For details, refer to the following manual.
• MELSEC-Q/L/QnA Programming Manual (SFC)

*3: The SFC block devices (BL) and step relays (S) of a High-speed Universal model QCPU can be used for
the index setting under the following ranges.
• SFC block device (BL): BL0 to BL319
• Step relay (S): Within the range set in the parameter

When the step relays (S) in an SFC block device are selected, S0 to S511 can be used for the index
setting.

Device Description

E Floating-point data

$ Character string data

. (D0.1 etc.) Bit-specified word device

FX, FY, FD Function devices

P Pointers used as labels

I Interrupt pointers used as labels

Z Index registers

S Step relays*3

TR SFC transition devices*2

BL SFC block devices*3

X0 MOV
EN ENO

ds Z0-1

X0 MOV
EN ENO

ds D0D10Z0

Index setting

Stores -1 at Z0.

Stores the data of D10Z0=
D{10+(-1)} = D9 to D0.

4-44 4.6 Index Setting

2) Devices with restrictions on index registers

(c) Devices that can be used for the index setting (for FXCPU)

The following table shows the devices that can be used for the index setting.

1) Devices with restrictions on index registers

When using FXCPU, note the following precautions.

 • The index setting for devices used in the basic instructions is available for
FX3U and FX3UC only.

 • The index setting cannot be applied to 32-bit counter and special auxiliary
relay.

Remark

There are no usage restrictions on index register numbers for current values of

the timer and counter.

Device Description Example

T
Only Z0 or Z1 can be used for contacts or

coils of the timer.

C
Only Z0 or Z1 can be used for contacts or

coils of the counter.

Device Description

M, S, T, C, D, R,

KnM, KnS, P, K
Decimal devices, values

X, Y, KnX, KnY Octal devices

H Hexadecimal values

TS0Z0 OUT_T
EN ENO
s1
s2

TC1Z1
100

CS0Z1 OUT_C
EN ENO
s1
s2

CC1Z0
100

X0 OUT_T
EN ENO
s1
s2

TC0
100

SM400 BCD
EN ENO
s dTN0Z4

X1 OUT_C
EN ENO
s1
s2

CC100
10

SM400 BCD
EN ENO
s dCN100Z6

K4Y30

K2Y40

Set value of timer
(Index setting is not applicable)

Current value of timer

Set value of counter
(Index setting is not applicable)

Current value of counter

4.6 Index Setting

4-45

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(d) The following figure shows the examples of index setting and their actual processing
devices.
(With the setting of Z0=20 and Z1=5)

Figure. 4.6-1 Ladder examples and actual processing devices

(3) 32-bit index setting (for Universal model QCPU (excluding Q00UJCPU), LCPU, and
FXCPU)

For Universal model QCPU (excluding Q00UJCPU) and LCPU, either of the following two
methods can be selected to specify index registers used for a 32-bit index setting.

 • Specify a range of index registers used for a 32-bit index setting.

 • Specify a 32-bit index setting using 'ZZ'.
For FXCPU, combine index registers V (from V0) and Z (from Z0) for a 32-bit index setting.

32-bit index settings using 'ZZ' can be used for the following CPU modules only.

 • QnU(D)(H)CPU with a serial number whose first five digits are '10042' or higher

(excluding Q00UJCPU)

 • QnUDE(H)CPU

 • QnUDVCPU

 • LCPU

Ladder example Actual processing device

X0 MOV
EN ENO

ds Z0K20

MOV
EN ENO

ds Z1K-5

X1 MOV
EN ENO

ds K1M38Z1K2X50Z0

K2X(50 + 14) = K2X64

X1 MOV
EN ENO

ds K1M33K2X64
Description

Converts K20 to a hexadecimal number.

K2X50Z0

K1M38Z1 K1M(38 - 5) = K1M33

X0 MOV
EN ENO

ds Z0K20

MOV
EN ENO

ds Z1K-5

X1 MOV
EN ENO

ds K3Y12FZ1D0Z0

X1 MOV
EN ENO

ds K3Y12AD20

Description

Hexadecimal number

D0Z0

K3Y12FZ1

D (0 + 20) = D20

K3Y(12F - 5) = K3Y12A

4-46 4.6 Index Setting

(a) Specifying a range of index registers used for a 32-bit index setting

1) Values from 2147483648 to 2147483647 can be set to index registers.

The following shows how the index is set.

2) Specification method

When setting indexes in 32-bit range, specify the start number of index

registers to be used in “Indexing Setting for ZR Device” setting in the

<<Device>> tab of the PLC parameter.

Figure 4.6-2 Index setting for ZR device on the parameter setting screen

When changing the start number of index registers to be used in the device

setting of the PLC parameter, do not change nor write only parameters to the

programmable controller. Always write parameters along with the program to the

programmable controller.

If data are forcibly written, the operation error "CAN'T EXE. PRG." (error code:

2500) occurs.

3) Devices that can be used for index settings

Only the following devices can be used for index settings.

*3: The devices can be used for High-speed Universal model QCPU only.

Device Description

ZR Serial number access file register

D Extended data register

W Extended link register

M*3 Internal relay

B*3 Link relay

D*3 Data register

W*3 Link register

Un\B*3 Link relay

Un\W*3 Link register

DMOV
EN ENO

ds Var_Z040000

X0

X0 MOV
EN ENO

ds D0ZR10Z0

Stores 40000 to Z0

Stores the data of

ZR {10+40000} = ZR40010 to D0

Index setting

4.6 Index Setting

4-47

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4) Usage range of index registers

The following table lists the usage range of index registers when setting

indexes in 32-bit range.

Since the specified index register (Zn) and next index register (Zn+1) are used

for index setting in 32-bit range, make sure not to overlap index registers being

used.

5) The following figure shows the examples of index setting and their actual

processing devices.

(With the setting of Z0 (32 bits) =100000 and Z2 (32 bits)=-20)

Figure 4.6-3 Ladder examples and actual processing devices

Setting value Index register Setting value Index register

Z0 Z0, Z1 Z10 Z10, Z11

Z1 Z1, Z2 Z11 Z11, Z12

Z2 Z2, Z3 Z12 Z12, Z13

Z3 Z3, Z4 Z13 Z13, Z14

Z4 Z4, Z5 Z14 Z14, Z15

Z5 Z5, Z6 Z15 Z15, Z16

Z6 Z6, Z7 Z16 Z16, Z17

Z7 Z7, Z8 Z17 Z17, Z18

Z8 Z8, Z9 Z18 Z18, Z19

Z9 Z9, Z10 Z19 Not applicable

Ladder example Actual processing device

X0 DMOV

EN ENO

ds Z0K100000

DMOV

EN ENO

ds Z2K-20

X1 MOV

EN ENO

ds D13000Z2ZR1000Z0

X1 MOV

EN ENO

ds D12980ZR101000

Description

ZR1000Z0 ZR(1000+100000) ZR101000

D13000Z2 D(30-20) D12980

4-48 4.6 Index Setting

(b) Specifying a 32-bit index setting using 'ZZ'

1) A 32-bit index can be specified to the index register by specifying an index

using 'ZZ', for instance, 'ZR0ZZ4'.

The following figure shows the 32-bit index setting using 'ZZ'.

2) Specification method

When specifying a 32-bit index setting using 'ZZ', select "Use ZZ" in the

"Indexing Setting for ZR Device" setting in the <<Device>> tab of the PLC

parameter.

Figure 4.6-4 Index setting for ZR device on the parameter setting screen

3) Devices that can be used for the index setting

Only the following devices can be used for the index setting.

4) Usage range of index registers

The following table shows the usage range of index registers when specifying

32-bit index setting using 'ZZ'.

When specifying a 32-bit index setting using 'ZZ', specify a device as a form of

ZRmZZn.

The device number of ZRm is indexed with 32 bits (Zn, Zn+1) by specifying

ZRmZZn.

*4: Indicates the device name (ZR, D, W) to be indexed

Device Description

ZR Serial number access file register

D Extended data register

W Extended link register

'ZZ'*2 Index register 'ZZ'*4 Index register

ZZ0 Z0, Z1 ZZ10 Z10, Z11

ZZ1 Z1, Z2 ZZ11 Z11, Z12

ZZ2 Z2, Z3 ZZ12 Z12, Z13

ZZ3 Z3, Z4 ZZ13 Z13, Z14

ZZ4 Z4, Z5 ZZ14 Z14, Z15

ZZ5 Z5, Z6 ZZ15 Z15, Z16

ZZ6 Z6, Z7 ZZ16 Z16, Z17

ZZ7 Z7, Z8 ZZ17 Z17, Z18

ZZ8 Z8, Z9 ZZ18 Z18, Z19

ZZ9 Z9, Z10 ZZ19 Not applicable

M0 DMOVP
EN ENO

ds Z4K100000

M0 MOVP
EN ENO

ds ZR0ZZ4K100

Set 100000 to Z4 and Z5.

Set 32-bit (Z4, Z5) index to ZR.

ZR(0+100000) indicates ZR100000.

4.6 Index Setting

4-49

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5) The following figure shows the examples of 32-bit index setting using 'ZZ' and

their actual processing devices.

(With the setting of Z0 (32 bits) =100000 and Z2 (32 bits)=-20)

Figure 4.6-5 Ladder examples and actual processing devices

6) Functions that can use 'ZZ'

32-bit index settings using 'ZZ' can be used in the following functions.

ZZn cannot be used individually such as 'DMOV K100000 ZZ0'. When setting a

value to index registers to specify a 32-bit index setting using 'ZZ', set a value to

Zn (Z0 to Z19).

ZZn cannot be entered individually in the functions.

(c) 32-bit index setting for FXCPU

Combine index registers V (from V0) and Z (from Z0) for a 32-bit index setting.

V is used for high order and Z is used for low order. With the combination of the

specified Z and the corresponding V, the device can be used as a 32-bit register.

Note that the index setting is not applied by specifying the high order V.

Example: When specifying Z4, V4 and Z4 are used as a 32-bit register.

Ladder example Actual processing device

No. Description

1 Device specification with an instruction in a program

2 Monitoring device registrations

3 Device test

4 Device test with an execution condition

5 Setting monitoring conditions

6
Sampling trace (trace point (device specification), trace target

devices)

7
Data logging function (sampling interval (device specification),

logging target data)

Setting value Index register

Z0 V0, Z0

Z1 V1, Z1

Z2 V2, Z2

Z3 V3, Z3

Z4 V4, Z4

Z5 V5, Z5

Z6 V6, Z6

Z7 V7, Z7

X0 DMOV

EN ENO

ds Z0K100000

DMOV

EN ENO

ds Z2K-20

X1 MOV

EN ENO

ds D13000Z2ZR1000ZZ0

X1 MOV

EN ENO

ds D12980ZR101000

Description

ZR1000Z0 ZR(1000+100000) ZR101000

D13000Z2 D(30-20) D12980

4-50 4.6 Index Setting

(4) Applying index settings to extended data registers (D) and extended link registers (W)

(for Universal model QCPU (excluding Q00UJCPU), and LCPU)
As an index setting can be applied to internal user devices, data registers (D) and link
registers (W), the device specification by the index setting can be used within the range of
extended data registers (D) and extended link registers (W).

1) Index settings that cross internal user devices and extended data registers (D)/

extended link registers (W)

An index setting that crosses internal user devices and extended data registers

(D)/extended link registers (W) cannot be applied. If the device range check is

enabled at the index setting, an error occurs. (Error code: 4101)

User program

D device image

Internal user

device

Extended data

register

Z0 = 0
D100

D1100

D20000

D22000

Z0 = 1000

Z1 = 0

Z1 = 2000

The index setting applied to

the extended data register

The index setting applied to

the internal user device

MOV
EN ENO

ds D100Z01234

MOV
EN ENO

ds D20000Z11234

User program

D device image

Internal user device

Extended data register

MOV
EN ENO

ds D100Z01234

Z0=0

Z0=20000

D100

D20100

The index setting applied to

the internal user device

The index setting that crosses

internal user device and extended

data register cannot be applied.

4.6 Index Setting

4-51

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

2) Index settings that cross file registers (ZR), extended data registers (D), and

extended link registers (W)

Even when an index setting that crosses file registers (ZR), extended data

registers (D), and extended link registers (W) is applied, an error does not

occur.

However, if the result of the index setting applied to file registers (ZR),

extended data registers (D) or extended link registers (W) exceeds the range

of the file register files, an error occurs. (Error code: 4101)

(5) Other applicable data

(a) Bit data

An index setting is applicable to device numbers whose digits are specified.

Note that an index setting is not applicable to the digit-specified bit device.

User program

MOV
EN ENO

ds D100Z01234

MOV
EN ENO

ds D20000Z11234

Z0=0

Z0=10000

ZR100

D14196

File register file

File

register

(8K points)

Z1=0

Z1=4000

D20000

W2DC0

Extended data

register (D)

(8K points)

From D12288

Extended link

register (W)

(8K points)

From W2000

Z1=10000

Even when the index setting that

crosses extended data register (D)

and extended link register (W) is

applied, an error does not occur.

If the result of the index setting

exceeds the range of the file

register files, an error occurs.

Even when the index setting

that crosses file register and

extended data registers (D) is

applied, an error does not occur.

BIN
EN ENO

ds D0K4X0Z2

BIN
EN ENO

ds D0K4Z3X0

Index setting is applicable

to the device number,

If Z2=3, then (X0+3)=X3

Index setting is not applicable

to the digit-specified bit device.

4-52 4.6 Index Setting

(b) An index setting is applicable to both start I/O numbers of the intelligent function module

and buffer memory addresses for intelligent function module devices*5.

(c) An index setting is applicable to both network numbers and device numbers for link

direct devices*5.

(d) An index setting is applicable to both start I/O numbers of the CPU module and CPU

shared memory addresses for multiple CPU area devices*6.

*5: For intelligent function module devices and link direct devices, refer to the User's Manual (Function
Explanation, Program Fundamentals) of the CPU module used.

*6: For multiple CPU area devices, refer to the User's Manual (Function Explanation, Program Fundamentals) of
the CPU module used.

(e) A 32-bit index setting is applicable to extended data register (D) and extended link

register (W)

(for Universal model QCPU (excluding Q00UJCPU), and LCPU)

When applying an index setting to extended data registers (D) or extended link registers

(W), it can be applied in 32-bit range as applying an index setting to file registers (ZR) in

the following two methods.

 • Specify a range of index registers used for a 32-bit index setting.

 • Specify a 32-bit index setting using 'ZZ'.

32-bit index settings using 'ZZ' can be used for the following CPU modules only.

 • QnU(D)(H)CPU with a serial number whose first five digits are '10042' or higher

(excluding Q00UJCPU)

 • QnUDE(H)CPU

 • QnUDVCPU

 • LCPU

MOV
EN ENO

ds D0U10Z1\G0Z2
If Z1=2 and Z2=8,

then U(10+2)\G(0+8)=U12\G8

MOV
EN ENO

ds D0J1Z1\K4X0Z2
If Z1=2 and Z2=8,

then J(1+2)\K4X(0+8)=J3\K4X8

MOV
EN ENO

ds D0U3E0Z1\G0Z2

4.6 Index Setting

4-53

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(6) Precautions

(a) Using the index setting for arguments of instruction/application function/function/

function block

When "Use ZZ" is checked in "Indexing Setting for ZR Device" setting in the

<<Device>> tab of the PLC parameter, and Z device is used for the argument of

instruction/application function/function/function block, the expression is converted to

"ZZ" at the compilation. This may cause unintended device accesses.

When "Use ZZ" is checked, use ZZ devices for arguments of instruction/application

function/function/function block.

(b) Applying the index setting within the FOR to NEXT instruction loop

The pulses can be output by using edge relays (V) within the FOR to NEXT instruction

loop.

Note that the pulses cannot be output by the PLS, PLF, or pulse (P) instruction.

[When using an edge relay] [When not using an edge relay]

(M0Z1 pulse is output normally.) (M0Z1 pulse is not output normally.)

Remark

The ON/OFF information of X0Z1 is stored to the edge relay V0Z1.

For example, the ON/OFF data of X0 is stored to V0 and the ON/OFF data of X1

is stored to V1.

Z0 and Z1 cannot be used when labels are used for array indexes within the FOR

to NEXT instruction loop.

SM400 MOV
EN ENO

ds Z10

FOR
EN ENO
n10

X0Z1 EGP
EN ENO

d V0Z1

OUT
EN ENO

d M0Z1

SM400 INC
EN ENO

d Z1

NEXT
EN ENO

SM400 MOV
EN ENO

ds Z10

FOR
EN ENO
n10

X0Z1 PLS
EN ENO

d M0Z1

SM400 INC
EN ENO

d Z1

NEXT
EN ENO

4-54 4.6 Index Setting

(c) Applying the index setting in the CALL instruction

The pulse can be output by using edge relays (V) with the CALL instruction. Note that

the pulse cannot be output by the PLS, PLF, or pulse (P) instruction.

[When using an edge relay] [When not using an edge relay]

(M0Z1 pulse is output normally.) (M0Z1 pulse is not output normally.)

(d) Device range check when the index setting is applied

1) For Basic model QCPU, High Performance model QCPU, Process CPU,

Redundant CPU, and FXCPU

The device range is not checked when the index setting is applied.

For Basic model QCPU, High Performance model QCPU, Process CPU, and

Redundant CPU, if the result of the index setting exceeds the device range

specified by a user, an error does not occur and the data are written to other

devices. (Note that if the result of the index setting exceeds the device range

specified by a user and the data are written to devices for the system, an error

occurs. (Error code: 1103))

For FXCPU, an operation error occurs. (Error code: 6706)

Create a program with caution when applying the index setting.

2) For Universal model QCPU, and LCPU

The device range is checked when the index setting is applied.

By changing the settings of the PLC parameter, the device range is not

checked.

(e) Switching between 16-bit and 32-bit range of the index setting

When switching between 16-bit and 32-bit range, check the positions of the index

setting in the program.

Since the specified index register (Zn) and next index register (Zn+1) are used for index

setting in 32-bit range, make sure not to overlap index registers being used.

SM400 MOV
EN ENO

ds Z11

CALL
EN ENO
pP0

SM400 MOV
EN ENO

ds Z11

CALL
EN ENO
pP0

X0Z1 EGP
EN ENO

d

OUT
EN ENO

dV0Z1 M0Z1

FEND
EN ENO

RET
EN ENO

SM400 MOV
EN ENO

ds Z11

CALL
EN ENO
pP0

SM400 MOV
EN ENO

ds Z11

CALL
EN ENO
pP0

X0Z1 PLS
EN ENO

d M0Z1

FEND
EN ENO

RET
EN ENO

4.7 Libraries

4-55

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.7 Libraries

A library is an aggregation of data including POUs, global labels, and structures organized in a

single file to be utilized in multiple projects.

The following are the advantages of using libraries.

• Data in library files can be utilized in multiple projects by installing them to each project.

• Since library data can be created according to the functions of components, data to be reused

can be easily confirmed.

• If components registered in a library are modified, the modification is applied to projects that

use the modified data.

The following figure shows the data flow when using library components in a project.

Library file

Global label

Structure

Program

Function block

Function

Global label

Structure

Program

Function block

Function

Global label

Program file

Task

POU

Program

Function block

Structure

Function

Project

Install

Library

Edit

Utilize

POUs can be called

from the programs

in the project.

Installed library can be

registered in the task

of the project.

4-56 4.7 Libraries
4.7.1 User libraries

4.7.1 User libraries
A user library is a library for storing created structures, global labels, POUs, and other data that

can be used in other projects.

(1) Composition of a user library

The following table shows data that can be registered in a user library.

Table 4.7.1-1 Composition of a user library

Name Description

Structure
Stores definitions of structures used in POU folders of library or definitions of

structures used in programs of a project.

Global label Stores definitions of global labels used in POU folders of library.

POU Stores programs, functions, and function blocks that can be used as libraries.

4.8 Precautions on Assigning a Name

4-57

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.8 Precautions on Assigning a Name

This section explains the conditions for assigning a name to a label, function block instance, or

structure label.

• Conditions

(1) Specify a name within 32 characters.

(2) Do not use reserved words.

For reserved words, refer to the following section.

 Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

(3) Use alphanumeric and underscores (_).

(4) Do not use an underscore at the end of the name.

Do not use two or more underscores in succession.

(5) Do not use spaces.

(6) Do not use a number for the initial character.

(7) Constants cannot be used.

(An identifier that begins with 'H' or 'h' and an expression where a hexadecimal (0 to F)
immediately follows 'H' or 'h' (maximum 9 digits including 'H' or 'h' (excluding 0 that
immediately follows 'H' or 'h')) are also treated as a constant. (Example: 'hab0'))

(8) Elementary data type names cannot be used.

(9) Function/FB names cannot be used.

4-58

MEMO

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

5

5-1

WRITING PROGRAMS

5.1 ST . 5-2

5.2 Structured Ladder/FBD. 5-13

5-2 5.1 ST
5.1.1 Standard format

5.1 ST

The ST language is a text language with a similar grammatical structure to the C language.

Controls such as conditional judgement and repetition process written in syntax can be

described.

This language is suitable for programming complicated processes that cannot be easily

described by a graphic language (structured ladder/FBD language).

5.1.1 Standard format

Operators and syntax are used for programming in the ST language.

Syntax must end with ';'.

Spaces, tabs, and line feeds can be inserted anywhere between a keyword and an identifier.

Comments can be inserted in a program. Describe '(*' in front of a comment and '*)' in back of a

comment.

Entering a comment in a comment causes the following compile error.

Compile error content: "Parser error" Error code : C1200

Assignment syntax

syntaxes

Comment

Calling the function

Calling the function block

Enter ';' at the end.

Space

Tab

Line feed

Comment

5.1 ST
5.1.2 Operators in ST language

5-3

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.1.2 Operators in ST language
The following table shows the operators used in the ST program and their priorities.

Table 5.1.2-1 Operators in the ST language

If a syntax includes multiple operators with a same priority, the operation is performed from the

leftmost operator.

The following table shows the operators, applicable data types, and operation result data types.

Table 5.1.2-2 Data types used in operators

Operator Description Example Priority

() Parenthesized expression (1+2)*(3+4) Highest

Lowest

Function () Function (Parameter list) ADD_E(bo01, in01, in02, in03)

** Exponentiation re01:= 2.0 ** 4.4

NOT Logical negation NOT bo01

*

/

MOD

Multiplication

Division

Modulus operation

3 * 4

12 / 3

13 MOD 3

+

-

Addition

Subtraction

in01 + in02

in01 - in02

<, >, <=, => Comparison in01 < in02

=

<>

Equality

Inequality

in01 = in02

in01 <> in02

AND, & Logical AND bo01 & bo02

XOR Exclusive OR bo01 XOR bo02

OR Logical OR bo01 OR bo02

Operator Applicable data type Operation result data type

*, /, +, - ANY_NUM ANY_NUM

<, >, <=, >=, =, <> ANY_SIMPLE Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

**
ANY_REAL (Base)

ANY_NUM (Exponent)
ANY_REAL

5-4 5.1 ST
5.1.3 Syntax in ST language

5.1.3 Syntax in ST language
The following table shows the syntax that can be used in the ST program.

Table 5.1.3-1 Syntax in the ST language

(1) Assignment syntax

(a) Format

(b) Description

The assignment syntax assigns the result of the right side expression to the label or

device of the left side.

The result of the right side expression and data type of the left side need to obtain the

same data when using the assignment syntax.

(c) Example

Array type labels and structure labels can be used for the assignment syntax.

Note the data types of left side and right side.

 • Array type labels

The data type and the number of elements need to be the same for left side and

right side.

When using array type labels, do not specify elements.

< Example >

intAry1 := intAry2;

 • Structure labels

The data type (structured data type) needs to be the same for left side and right

side.

< Example >

dutVar1 := dutVar2;

Type of syntax Description

Assignment syntax Assignment syntax

Conditional syntax
IF THEN conditional syntax, IF ELSE conditional syntax, and IF ELSIF conditional syntax

CASE conditional syntax

Iteration syntax

FOR DO syntax

WHILE DO syntax

REPEAT UNTIL syntax

Other control syntax
RETURN syntax

EXIT syntax

<Left side> := <Right side>;

5.1 ST
5.1.3 Syntax in ST language

5-5

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(2) IF THEN conditional syntax

(a) Format

(b) Description

The syntax is executed when the value of Boolean expression (conditional expression)

is TRUE. The syntax is not executed if the value of Boolean expression is FALSE.

Any expression that returns TRUE or FALSE as the result of the Boolean operation with

a single bit type variable status, or a complicated expression that includes many

variables can be used for the Boolean expression.

(c) Example

(3) IF ...ELSE conditional syntax

(a) Format

(b) Description

Syntax 1 is executed when the value of Boolean expression (conditional expression) is

TRUE.

Syntax 2 is executed when the value of Boolean expression is FALSE.

(c) Example

IF <Boolean expression> THEN
<Syntax ...>;
END_IF;

IF <Boolean expression> THEN
<Syntax 1 ...>;
ELSE
<Syntax 2 ...>;
END_IF;

5-6 5.1 ST
5.1.3 Syntax in ST language

(4) IF ...ELSIF conditional syntax

(a) Format

(b) Description
Syntax 1 is executed when the value of Boolean expression (conditional expression) 1
is TRUE. Syntax 2 is executed when the value of Boolean expression 1 is FALSE and
the value of Boolean expression 2 is TRUE.
Syntax 3 is executed when the value of Boolean expression 1 and 2 are FALSE and the
value of Boolean expression 3 is TRUE.

(c) Example

(5) CASE conditional syntax

(a) Format

(b) Description
The result of the CASE conditional expression is returned as an integer value. The
CASE conditional syntax is used to execute a selection syntax by a single integer value
or an integer value as the result of a complicated expression.
When the syntax that has the integer selection value that matches with the value of
integer expression is executed, and if no integer selection value is matched with the
expression value, the syntax that follows the ELSE syntax is executed.

(c) Example

IF <Boolean expression 1> THEN
<Syntax 1 ...>;
ELSIF <Boolean expression 2> THEN
<Syntax 2 ...>;
ELSIF <Boolean expression 3> THEN
<Syntax 3 ...>;
END_IF;

CASE <Integer expression> OF
<Integer selection 1> : <Syntax 1 ...>;
<Integer selection 2> : <Syntax 2 ...>;
·
·
·
<Integer selection n> : <Syntax n ...>;
ELSE
<Syntax n+1 ...>;
END_CASE;

5.1 ST
5.1.3 Syntax in ST language

5-7

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(6) FOR...DO syntax

(a) Format

(b) Description

The FOR...DO syntax repeats the execution of several syntax according to the value of

a repeat variable.

(c) Example

(7) WHILE...DO syntax

(a) Format

(b) Description

The WHILE...DO syntax executes one or more syntax while the value of Boolean

expression (conditional expression) is TRUE.

The Boolean expression is evaluated before the execution of the syntax. If the value of

Boolean expression is FALSE, the syntax in the WHILE...DO syntax is not executed.

Since a return result of the Boolean expression in the WHILE syntax requires only

TRUE or FALSE, any Boolean expression that can be specified in the IF conditional

syntax can be used.

(c) Example

FOR <Repeat variable initialization>
TO <Last value>
BY <Incremental expression> DO
<Syntax ...>;
END_FOR;

WHILE <Boolean expression> DO
<Syntax ...>;
END_WHILE;

5-8 5.1 ST
5.1.3 Syntax in ST language

(8) REPEAT...UNTIL syntax

(a) Format

(b) Description

The REPEAT...UNTIL syntax executes one or more syntax while the value of Boolean

expression (conditional expression) is FALSE.

The Boolean expression is evaluated after the execution of the syntax. If the value of

Boolean expression is TRUE, the syntax in the REPEAT...UNTIL syntax are not

executed.

Since a return result of the Boolean expression in the REPEAT syntax requires only

TRUE or FALSE, any Boolean expression that can be specified in the IF conditional

syntax can be used.

(c) Example

(9) RETURN syntax

(a) Format

(b) Description

The RETURN syntax is used to end a program in a middle of the process.

When the RETURN syntax is used in a program, the process jumps from the RETURN

syntax execution step to the last line of the program, ignoring all the remaining steps

after the RETURN syntax.

(c) Example

REPEAT
<Syntax ...>;
UNTIL <Boolean expression>
END_REPEAT;

RETURN;

5.1 ST
5.1.4 Calling functions in ST language

5-9

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(10) EXIT syntax

(a) Format

(b) Description

The EXIT syntax is used only in iteration syntax to end the iteration syntax in a middle of

the process.

When the EXIT syntax is reached during the execution of the iteration loop, the iteration

loop process after the EXIT syntax is not executed. The process continues from the line

after the one where the iteration syntax is ended.

(c) Example

5.1.4 Calling functions in ST language
The following description is used to call a function in the ST language.

Enclose the arguments by '()' after the function name.

When using multiple variables, delimit them by ','.

The execution result of the function is stored by assigning the result to the variables.

1) Calling a function with one input variable (Example: ABS)

2) Calling a function with three input variables (Example: MAX)

3) Calling a function with EN/ENO (Example: MOV)

For a function with EN/ENO, the result of the function execution is ENO, and

the first argument (Variable 1) is EN.

EXIT;

Function name (Variable1, Variable2, ...);

Output1 := ABS(Input1);

Output1 := MAX(Input1, Input2, Input3);

boolENO := MOV(boolEN, Input1, Output1);

5-10 5.1 ST
5.1.5 Calling function blocks in ST language

5.1.5 Calling function blocks in ST language
The following description is used to call a function block in the ST language.

Enclose the assignment syntax that assigns variables to the input variable and output variable by

'()' after the instance name.

When using multiple variables, delimit assignment syntax by ',' (comma).

The execution result of the function block is stored by assigning the output variable that is

specified by adding '.' (period) after the instance name to the variable.

1) Calling a function block with one input variable and one output variable

The following is the description to call the function block above.

2) Calling a function block with three input variables and two output variables

The following is the description to call the function block above.

Arguments using at function block call;

VAR_OUTPUT is not appeared on a template if a checkbox in the following option

window is not selected;

[Tools]  [Options] "Convert" "Structured Ladder/FBD/ST""Compile

Condition1""Allow VAR_OUTPUT at FB call (ST)".

Instance name(Input variable1:= Variable1, ... Output variable1: = Variable2, ...);

FB definition

FB Name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Output variable1: OUT1

FBADD1(IN1:=Input1);

Output1:=FBADD1.OUT1;

FB definition

FB Name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Input variable2: IN2

Input variable3: IN3

Output variable1: OUT1

Output variable2: OUT2

FBADD1(IN1:=Input1, IN2:=Input2, IN3:= Input3);

Output1:=FBADD1.OUT1;

Output2:=FBADD1.OUT2;

5.1 ST
5.1.6 Precautions when using conditional syntax and iteration syntax

5-11

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.1.6 Precautions when using conditional syntax and iteration syntax
The following explains the precautions when creating ST programs using conditional syntax and

iteration syntax.

(1) Once the conditions (boolean expression) are met in the conditional syntax or iteration
syntax, the bit device which is turned ON in the <syntax> is always set to ON.

• A program whose bit device is always set to ON

To avoid the bit device to be always set to ON, add a program to turn the bit device OFF as

shown below.

• A program to avoid the bit device to be always set to ON.

*1 The above program can also be written as follows.
Y0 := M0;
or
OUT(M0,Y0);
Note that, when the OUT instruction is used in <syntax> of conditional syntax or iteration syntax, the program
status becomes the same as the program whose bit device is always set to ON.

ST program
Structured ladder/FBD program

 equivalent to ST program

ST program*1 Structured ladder/FBD program

 equivalent to ST program

5-12 5.1 ST
5.1.6 Precautions when using conditional syntax and iteration syntax

(2) When Q00UCPU, Q00UJCPU or, Q01UCPU is used, and the string type is applied to
Boolean expression (conditional expression) with conditional syntax or iteration syntax, a
compilation error may occur.

 • Program example which causes compilation error

To avoid a compilation error, create the function blocks of the string type comparison with
ladder or structured ladder/FBD, and apply the operation result of function blocks to the
conditional expression of conditional syntax or iteration syntax.
The following is an example when creating the function blocks with structured ladder/FBD.

 • Program creation example which avoids compilation error

➀ Create the function blocks of the string type comparison with structured ladder/FBD

program.

➁ Apply the operation result of function blocks (EQFB_01) to the conditional expression

in ST program.

ST program

Function block (EQFB_01)

Label setting

ST program

Compilation error occurs
when specifying string type data.

Apply the operation result of
function blocks (EQFB_01)

5.2 Structured Ladder/FBD
5.2.1 Standard format

5-13

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.2 Structured Ladder/FBD

The structured ladder/FBD is a graphic language for writing programs using ladder symbols such
as contacts, coils, functions, and function blocks.

5.2.1 Standard format

In the structured ladder/FBD language, units of ladder blocks are used for programming.

For structured ladder, connect the left power rail and ladder symbols with lines.

For FBD, connect the ladder symbols with lines according to the flow of data or signals without
connecting with the left power rail.

Contact Coil

Function

Input variables Output variables

Function block
Ladder block label

Left power rail

5-14 5.2 Structured Ladder/FBD
5.2.2 Ladder symbols in structured ladder/FBD language

5.2.2 Ladder symbols in structured ladder/FBD language
The following table shows the ladder symbols that can be used in the structured ladder/FBD

language.

For details, refer to the following manual.

 MELSEC-Q/L Structured Programming Manual (Common Instructions)

Table 5.2.2-1 Ladder symbols in the structured ladder/FBD language (1/2)

Element Ladder symbol Description

Normal *1,*2 Turns ON when a specified device or label is ON.

Negation *1,*2 Turns OFF when a specified device or label is OFF.

Rising edge *1,*2,*3 Turns ON at the rising edge (OFF to ON) of a specified device or label.

Falling edge *1,*2,*3
Turns ON at the falling edge (ON to OFF) of a specified device or

label.

Negated rising edge *1,*2,*3
Turns ON when a specified device or label is OFF or ON, or at the

falling edge (ON to OFF) of a specified device or label.

Negated falling edge *1,*2,*3
Turns ON when a specified device or label is OFF or ON, or at the

rising edge (OFF to ON) of a specified device or label.

Normal *1 Outputs the operation result to a specified device or label.

Negation *1
A specified device or label turns ON when the operation result turns

OFF.

Set *1
A specified device or label turns ON when the operation result turns ON.

Once the device or label turns ON, it remains ON even when the

operation result turns OFF.

Reset *1
A specified device or label turns OFF when the operation result turns

ON. If the operation result is OFF, the status of the device or label

does not change.

*1: Not applicable in FBD.
*2: A contact performs an AND operation or OR operation according to the connection of a

ladder block and reflects in the operation result.
• For a series connection, it performs an AND operation with the operation result up

to that point, and takes the resulting value as the operation result.
• For a parallel connection, it performs an OR operation with the operation result up

to that point, and takes the resulting value as the operation result.

*3: Supported with GX Works2 Version 1.15R or later.
For the confirmation method of the version of GX Works2, refer to the following manual.

 GX Works2 Version 1 Operating Manual (Common)

()

Series-connection contact

Parallel-connection contact

5.2 Structured Ladder/FBD
5.2.2 Ladder symbols in structured ladder/FBD language

5-15

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

Table 5.2.2-1 Ladder symbols in the structured ladder/FBD language (2/2)

The performance of return differs depending on the programs, functions, and

function blocks being used.

 • When used in the programs

End the execution of POUs

 • When used in the functions

End the functions. Also, return to the next step of the instruction which called

the functions.

 • When used in the function blocks

The performance differs depending on whether "Use Macrocode" is checked or

not on the Property screen.

When it is checked, end the execution of POUs.

When it is not checked, end the function blocks. Also, return to the next step of

the instruction which called the functions.

Element Network element Description

Jump

Pointer branch instruction

Unconditionally executes the program at the specified pointer number

in the same POUs.

Return Indicates the end of a subroutine program.

Function Executes a function.

Function block Executes a function block.

Function argument input Inputs an argument to a function or function block.

Function return value output Outputs the return value from a function or function block.

Function inverted argument input Inverts and inputs an argument to a function or function block.

Function inverted return value

output
Inverts the return value from a function or function block and outputs it.

5-16 5.2 Structured Ladder/FBD
5.2.3 Executing order

5.2.3 Executing order
The following figures explain the program executing order.

The operation order in a ladder block is from the left power rail to the right and from the top to the

bottom.

The program is executed from the left power rail to the right when the ladder is not branched and

ENs and ENOs are connected in series.

The program is executed from the top to the bottom, when the ladder is branched and ENs and

ENOs are connected in parallel.

The program is executed in the order as shown below when the MOV instruction () in the

above figure is moved to the top.
4

Move to the top

5.2 Structured Ladder/FBD
5.2.4 Ladder branches and compilation results

5-17

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.2.4 Ladder branches and compilation results
When the ladder is branched, different compilation results are produced for the program after the

branch depending on the program up to the branch.

The following explains the precautions on compilation results depending on ladder branches.

(1) When one contact is used up to the branch, the instruction of the contact is used multiple
times in the compilation result.

< Precautions >
When the device in which the value changes during one scan (such as SM412) is used, only
a part of the sequence program after the branch is executed, and the rest of the sequence
program may not be executed.

When executing multiple instructions against one contact, connect the instructions in series.
Since the sequence program uses the LD instruction only once in the compilation result, all
sequence programs are executed.

< Example > < Compilation result >

The LD instructions are

created using the contact.

< Example > < Compilation result >

If the value of SM412

changes during one scan,

a part of the program may

not be executed.

< Example >

< Compile Result >

5-18 5.2 Structured Ladder/FBD
5.2.4 Ladder branches and compilation results

(2) When multiple contacts are used, or a function/function block is used up to the branch, the
temporary variable is appended to the branch in the compilation result.

Connect the instructions in series as shown in < Precautions > of (1) to avoid using
temporary variables in the compilation result.
For details on temporary variables, refer to the following manual.

 GX Works2 Version 1 Operating Manual (Structured Project)

● Multiple contacts are used up to the branch

● Output value of function or function block is branched

< Example > < Compilation result >

Temporary variable is

appended.

The operation result up to

the branch is output to the

temporary variable.

< Example > < Compilation result >

Temporary variable is

appended.

The operation result up to

the branch is output to the

temporary variable.

5.2 Structured Ladder/FBD
5.2.5 Precautions on creating programs with structured ladder/FBD

5-19

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.2.5 Precautions on creating programs with structured ladder/FBD
The following explains the Precautions on creating a program with structured ladder/FBD.

When Q00UCPU, Q00UJCPU, Q01UCPU is used, and the string type is applied to enter the

standard comparison functions, a compilation error may occur.

• Program example which causes compilation error

To avoid a compilation error, use LD$=, LD$<>, LD$<=, LD$<, LD$>=, or LD$> instructions.

• Program example which avoids compilation error

Structured ladder/FBD program

Structured ladder/FBD program

5-20

MEMO

A

App-1

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

APPENDICES

Appendix 1 Correspondence between Generic Data Types and Devices App-2

Appendix 2 Character Strings that cannot be Used in Label Names and Data Names . . App-6

Appendix 3 Recreating Ladder Programs . App-9

App-2 Appendix 1 Correspondence between Generic Data Types and Devices

Appendix 1 Correspondence between Generic Data
Types and Devices

The following table shows the correspondence between generic data types and devices.

Table App. 1-1 Correspondence between generic data types and devices

Device

Classification Type Device name Device symbol

Internal user device

Bit device

Input X

Output Y

Internal relay M

Latch relay L

Annunciator F

Edge relay V

Step relay S

Link special relay SB

Link relay B

Timer contact*1 TS

Timer coil*1 TC

Retentive timer contact*1 STS

Retentive timer coil*1 STC

Counter contact*1 CS

Counter coil CC

Word device

Timer current value T or TN*1

Retentive timer current value ST or STN*1

Counter current value C or CN*1

Data register D

Link register W

Link special register SW

Internal system device

Bit device

Function input FX

Function output FY

Special relay SM

Word device
Function register FD

Special register SD

*1: Can be used for digit specification.
*2: Can be used for bit specification.

Appendix 1 Correspondence between Generic Data Types and Devices

App-3

A

A
P

P
E

N
D

IC
E

S

Generic data type

ANY

ANY
ANY_SIMPLE

Array Structure

ANY_BIT
ANY_NUM

Time String

ANY_INT ANY_REAL

Bit

Word

(unsigned)/

16-bit string

Double

word

(unsigned)/

32-bit string

Word

(signed)

Double

word

(signed)

Single-

precision

real

Double-

precision

real

ANY16 ANY32

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*2

*2

*2

            

            

*1 *1 *1 *1 *1 *1

     

*2

App-4 Appendix 1 Correspondence between Generic Data Types and Devices

Link direct device

Bit device

Link input Jn\X

Link output Jn\Y

Link relay Jn\B

Link special relay Jn\SB

Word device
Link register Jn\W

Link special register Jn\SW

Intelligent function module

device
Word device Intelligent function module device Un\G

Index register Word device Index register Z

File register Word device File register R or ZR

Nesting  Nesting N

Pointer 
Pointer P

Interrupt pointer I

Constant  
K, H

E

String constant  
'Character string' or "Character

string"

Device

Classification Type Device name Device symbol

*1: Can be used for digit specification.
*2: Can be used for bit specification.

Appendix 1 Correspondence between Generic Data Types and Devices

App-5

A

A
P

P
E

N
D

IC
E

S

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*1 *1 *1 *1 *1 *1

*2

*2

*2

*2

            

            

            

Generic data type

ANY

ANY
ANY_SIMPLE

Array Structure

ANY_BIT
ANY_NUM

Time String

ANY_INT ANY_REAL

Bit

Word

(unsigned)/

16-bit string

Double

word

(unsigned)/

32-bit string

Word

(signed)

Double

word

(signed)

Single-

precision

real

Double-

precision

real

ANY16 ANY32

App-6 Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

Appendix 2 Character Strings that cannot be Used in
Label Names and Data Names

Character strings used for application function names, common instruction names, special

instruction names, and instruction words are called reserved words.

These reserved words cannot be used for label names or data names. If the character string

defined as a reserved word is used for a label name or data name, an error occurs during

registration or compilation.

The following tables shows character strings that cannot be used for label names or data names.

The numbers from to in the tables indicate the following label names and data names.

Table App. 2-1 Character strings that cannot be used for label names and data names (1/3)

<Label name and data name>

 Project file name

 Program file name (Simple (without labels))

 Program file name (Simple (with labels))

 Program file name (structure)

 Task name

 Global label data name

 Structure name

 POU name

 Label name

Category Character string

Class identifier

VAR, VAR_RETAIN, VAR_ACCESS, VAR_CONSTANT,

VAR_CONSTANT_RETAIN, VAR_INPUT, VAR_INPUT_RETAIN,

VAR_OUTPUT, VAR_OUTPUT_RETAIN, VAR_IN_OUT,

VAR_IN_EXT, VAR_EXTERNAL, VAR_EXTERNAL_CONSTANT,

VAR_EXTERNAL_CONSTANT_RETAIN,

VAR_EXTERNAL_RETAIN, VAR_GLOBAL,

VAR_GLOBAL_CONSTANT,

VAR_GLOBAL_CONSTANT_RETAIN, VAR_GLOBAL_RETAIN

Data type

BOOL, BYTE, INT, SINT, DINT, LINT, UINT, USINT, UDINT, ULINT,

WORD, DWORD, LWORD, ARRAY, REAL,

LREAL, TIME, STRING, TIMER, COUNTER, RETENTIVETIMER,

POINTER, Bit, Word [Unsigned]/Bit String [16-bit], Double Word

[Unsigned]/Bit String [32-bit], Word [Signed], Double Word

[Signed], FLOAT (Single Precision), FLOAT (Double Precision),

String, Time, Timer, Counter, Retentive Timer, Pointer

Data type hierarchy
ANY, ANY_NUM, ANY_BIT, ANY_REAL, ANY_INT, ANY_DATE

ANY_SIMPLE, ANY16, ANY32 *1

Device name
X, Y, D, M, T, B, C, F, L, P, V, Z, W, I, N, U, J, K, H, E, A, SD, SM,

SW, SB, FX, FY, DX, DY, FD, TR, BL, SG, VD, ZR, ZZ*2 *1

Character string

recognized as device

(Device name +

Numeral)

Such as X0 *3

ST operator
NOT, MOD

(,), - *1

: Applicable, : With restrictions, : Not applicable

*1: Functions cannot be used.
*2: Whether to handle a device name indexed with ZZ device as a reserved word depends on the parameter

setting.
When Z device is specified for 32-bit index setting: Not handled as a reserved word
When ZZ device is specified for 32-bit index setting: Handled as a reserved word

*3: Applicable for Simple projects without labels only.

1 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

App-7

A

A
P

P
E

N
D

IC
E

S

Table App. 2-1 Character strings that cannot be used for label names and data names (2/3)

Category Character string

IL operator

LD, LDN, ST, STN, S, S1, R, R1, AND, ANDN, OR, ORN, XOR,

XORN, ADD, SUB, MUL, DIV, GT, GE, EQ,

NE, LE, LT, JMP, JMPC, JMPCN, CAL, CALC, CALCN, RET,

RETC, RETCN

LDI, LDP, LDPI, LDF, LDFI, ANI, ANDP, ANDPI, ANDF, ANDFI,

ANB, ORI, ORP, ORPI, ORF, ORFI, ORB, MPS, MRD, MPP, INV,

MEP, MEF, EGP, EGF, OUT(H), SET, RST, PLS, PLF, FF,

DELTA(P), SFT(P), MC, MCR, STOP, PAGE, NOP, NOPLF

*1

Application instruction

in GX Works2

Application instructions such as DMOD, PCHK, INC(P)

 MELSEC-Q/L Programming Manual (Common Instructions),

MELSEC-Q/L Structured Programming Manual (Common

Instructions)

 FXCPU Structured Programming Manual [Basic & Applied

Instruction], FXCPU Structured Programming Manual [Application

Functions]

*1

SFC instruction

SFCP, SFCPEND, BLOCK, BEND, TRANL, TRANO, TRANA,

TRANC, TRANCA, TRANOA, SEND, TRANOC, TRANOCA,

TRANCO, TRANCOC, STEPN, STEPD, STEPSC, STEPSE,

STEPST, STEPR, STEPC, STEPG, STEPI, STEPID,

STEPISC, STEPISE, STEPIST, STEPIR, TRANJ, TRANOJ,

TRANOCJ, TRANCJ, TRANCOJ, TRANCOCJ

*1

ST code body

RETURN, IF, THEN, ELSE, ELSIF, END_IF, CASE, OF,

END_CASE, FOR, TO, BY, DO, END_FOR, WHILE,

END_WHILE, REPEAT, UNTIL, END_REPEAT, EXIT, TYPE,

END_TYPE, STRUCT, END_STRUCT, RETAIN,

VAR_ACCESS, END_VAR, FUNCTION, END_FUNCTION,

FUNCTION_BLOCK, END_FUNCTION_BLOCK, STEP,

INITIAL_STEP, END_STEP, TRANSITION, END_TRANSITION,

FROM, TO, UNTILWHILE

Function name in

application function
Function names in application functions such as AND_E, NOT_E

Function block name in

application function
Function block names in application functions such as CTD, CTU

Symbol

/, \, *, ?, <, >, ¦, ", :, [,] , , , =, +, %, ', ~, @, {, }, &, ^, ., ', tab

character

;

!, #, $, `

Date and time literal DATE, DATE_AND_TIME, DT, TIME, TIME_OF_DAY, TOD

Others

ACTION, END_ACTION, CONFIGURATION,

END_CONFIGURATION, CONSTANT, F_EDGE, R_EDGE, AT,

PROGRAM,

WITH, END_PROGRAM, TRUE, FALSE, READ_ONLY,

READ_WRITE, RESOURCE, END_RESOURCE, ON, TASK,

EN, ENO, BODY_CCE, BODY_FBD, BODY_IL, BODY_LD,

BODY_SFC, BODY_ST, END_BODY,

END_PARAMETER_SECTION,

PARAM_FILE_PATH, PARAMETER_SECTION, SINGLE,

RETAIN, INTERVAL

: Applicable, : With restrictions, : Not applicable

*1: Functions cannot be used.

1 2 3 4 5 6 7 8 9

App-8 Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

Table App. 2-1 Character strings that cannot be used for label names and data names (3/3)

(1) Precautions on using labels

 • In a function, the same name as the function cannot be used for a label.

 • A space cannot be used.

 • A numeral cannot be used at the beginning of label name.

 • A label name is not case-sensitive. An error may occur at compilation when the same
label names with different cases (example: 'AAA' and 'aaa') are declared.

 • In structured ladder/FBD and ST programs, the same label name can be used for a global

label and a local label by setting the following option in GX Works2*1.
*1: Check the "Use the same label name in global label and local label" item under [Tool]  [Options] 

"Compile"  "Basic Setting".

 • An underscore (_) cannot be used at the beginning or end of label name.
Consecutive underscores (_) cannot be used for data name and label name.

 • For Simple projects, function names and function block names in common instructions
and application functions can be used.

Category Character string

String that starts with K1

to K8
Such as K1AAA *1

Address Such as %IX0

Statement in ladder

language

;FB BLK START, ;FB START, ;FB END, ;FB BLK END, ;FB IN, ;FB

OUT, ;FB_NAME;,INSTANCE_NAME,

;FB, ;INSTANCE

Common instruction Such as MOV *3

Windows reserved word

COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8,

COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8,

LPT9, AUX, CON, PRN, NUL

: Applicable, : With restrictions, : Not applicable

*1: Functions cannot be used.
*3: Applicable for Simple projects without labels only.

1 2 3 4 5 6 7 8 9

Appendix 3 Recreating Ladder Programs
Appendix 3.1 Procedure for creating a structured program

App-9

A

A
P

P
E

N
D

IC
E

S

Appendix 3 Recreating Ladder Programs

This section provides an example of creating a structured program same as the program created

in the ladder programming language using GX Works2.

Appendix 3.1 Procedure for creating a structured program
The following explains the basic procedure for creating a structured program based on the

program created in the ladder programming language.

(1) Replacing devices with labels

(2) Setting labels

(3) Creating a program

Procedure

Labels include global labels and local labels.

Determine the type of labels (global label or local label) to replace devices.

Procedure

Global labels and local labels to be used in the program must be defined.

Define all labels to be used in the program.

Procedure

Create a structured program in the programming language to be used.

App-10 Appendix 3 Recreating Ladder Programs
Appendix 3.2 Example of creating a structured program

Appendix 3.2 Example of creating a structured program
This section shows an example of creating a sequence program same as the program created in

GX Developer using GX Works2.

The following examples explain the method for creating a structured program same as the data

receive program for a Q-compatible serial communication module, using the structured ladder/

FBD and ST languages.

The following shows the original program.

(1) Replacing devices with labels

Replace devices of the original program with labels.
Replace input/output devices with global labels. For devices such as internal relays, replace
them with local labels.

Table App. 3.2-1 Examples of replacement from devices to labels

Device Purpose
Label

Data type Label name

X3 CH1 reception data read request Bit CH1ReadRequest

X4 CH1 reception abnormal detection Bit CH1AbnormalDetection

D0

Control data

Reception channel

Word (unsigned)/16-bit

string [0] to [3]
ControlData

D1 Reception result

D2 Number of reception data

D3
Number of allowable reception

data

D10 to D109 Reception data
Word (unsigned)/16-bit

string [0] to [99]
ReceiveData

D110 to D209 Reception data storage area
Word (unsigned)/16-bit

string [0] to [99]
Data

M0 Data

reception

completion

flag

Completion flag

Bit [0] to [1] Completion
M1 Status flag at completion

M100 Abnormal completion flag Bit AbnormalCompletion

X100 Abnormal completion flag reset command Bit ResetAbnormalCompletion

Clear the reception result and receive data count

storage device to 0.

With normal completion, the receive data within the

allowable receive data count (user specified) is read

from the receive data storage area in the buffer memory.
Once the INPUT instruction is executed, the user
specified read completion signal (M0) turns ON for
1 scan.

The reading of receive data and switching of the
ON/OFF status are performed by the programmable
controller CPU.

•

•

The abnormal completion flag is reset by an external

command.

Specify the receive channel.

Specify the allowable receive data count.

Appendix 3 Recreating Ladder Programs
Appendix 3.2 Example of creating a structured program

App-11

A

A
P

P
E

N
D

IC
E

S

(2) Setting labels

Set global labels and local labels.

 • Setting examples of global labels

 • Setting examples of local labels*1

*1: Devices of local labels are automatically assigned within the range specified in the
device/label automatic-assign setting in GX Works2.
To assign the same devices as those in the original ladder program, set them as global
labels.

App-12 Appendix 3 Recreating Ladder Programs
Appendix 3.2 Example of creating a structured program

(3) Creating a structured program

The following examples show how a structured program is created based on the original
program.

 • Original program (Programming language: ladder)

 • Structured program (Programming language: structured ladder/FBD)

1

2

3

1

2

3

Appendix 3 Recreating Ladder Programs
Appendix 3.2 Example of creating a structured program

App-13

A

A
P

P
E

N
D

IC
E

S

 • Original program (Programming language: ladder)

 • Structured program (Programming language: ST)

*1: When using multiple contacts for execution conditions, enclose them by '()' to be
programmed in a group.

1

2

3

*1

*1

*1

*1

1

2

3

App-14

MEMO

1

O
V

E
R

V
IE

W

2

ST
RU

CT
UR

ED
 D

ES
IG

N
O

F
SE

Q
UE

NC
E

PR
O

G
RA

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C

R
E

AT
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IC
E

S

I
IN

D
E

X

I

Index-1

INDEX

Index-2

[Numeric character]

32-bit index setting .. 4-45

[A]

address ... 4-39,4-40

array .. 4-35

[B]

Bit data .. 4-22

[C]

calling function blocks 5-10,5-11

calling functions... 5-9

class .. 4-16

constant... 4-20

correspondence between generic data types

and devices ...App-2

[D]

data types.. 4-18

device..4-38,4-40,App-2

double word (32 bits) data..................................... 4-26

double-precision real data..................................... 4-29

[E]

elementary data types... 4-18

EN ... 4-13

ENO .. 4-13

executing condition ... 4-4

[F]

FBD ... 5-13

function blocks .. 4-7

functions.. 4-6

[G]

generic data type... 4-19

global labels .. 4-15

[H]

hierarchy ... 1-7,2-2

[I]

index setting .. 4-43

input variables ... 4-16

input/output variables .. 4-16

instances ... 4-7,4-12

[L]

ladder block labels .. 4-8

ladder blocks ... 4-8

ladder symbols .. 5-14

libraries.. 4-55

local labels .. 4-15

[M]

method for specifying data 4-21

[O]

operators ... 5-3

output variables ... 4-10,4-16

[P]

POU... 4-5

precautions on assigning label names 4-57

priority.. 4-4

program ... 4-5

program blocks.. 4-6

program components .. 1-7,2-3

program files.. 4-3

project..2-2,4-3

[S]

single-precision real data 4-29

specify a bit device of word device........................ 4-22

specify digits of bit data ... 4-23

specifying digits of bit devices 4-23

ST.. 4-9

standard format ... 5-2,5-13

string data.. 4-33

Structure.. 4-37

structured design... 1-7

structured ladder ... 4-9,5-13

syntax .. 5-4

[T]

tasks .. 4-4

The structured ladder/FBD 5-13

[U]

user libraries.. 4-56

[W]

word (16 bits) data... 4-23

WARRANTY
Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the
product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or
Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be
solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning,
maintenance, or testing on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated
place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months,
and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of
repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc.,

which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution
labels on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure

caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if

functions or structures, judged as necessary in the legal safety measures the user's device is subject to or
as necessary by industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by
force majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from
Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is
discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at
each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any
cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures
of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for
accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user,
maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Mcrosoft, Windows, Windows Vista, Windows NT, Windows XP, Windows Server, Visio, Excel, PowerPoint, Visual Basic,

Visual C++, and Access are either registered trademarks or trademarks of Microsoft Corporation in the United States,

Japan, and other countries.

Pentium is a trademark of Intel Corporation in the United States and other countries.

Ethernet is a registered trademark of Xerox Corp.

The SD and SDHC logos are either registered trademarks or trademarks of SD-3C, LLC.

All other company names and product names used in this manual are either trademarks or

registered trademarks of their respective companies.

SH(NA)-080782ENG-M

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	REVISIONS
	INTRODUCTION
	CONTENTS
	MANUALS
	1. OVERVIEW
	1.1 Overview
	1.2 Purpose of This Manual
	1.3 Terms
	1.4 Features of Structured Programs
	1.5 Applicable CPU Modules
	1.6 Compatible Software Package

	2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS
	2.1 What is a Hierarchical Sequence Program?
	2.2 What is a Structured Sequence Program?

	3. PROCEDURE FOR CREATING PROGRAMS
	3.1 Procedure for Creating Sequence Programs in Structured Project

	4. PROGRAM CONFIGURATION
	4.1 Overview of Program Configuration
	4.1.1 Project
	4.1.2 Program files
	4.1.3 Tasks

	4.2 POUs
	4.2.1 Types of POU
	4.2.2 Program
	4.2.3 Functions
	4.2.4 Function blocks
	4.2.5 Operators
	4.2.6 Ladder blocks
	4.2.7 Programming languages for POUs
	4.2.8 Functions, function blocks, and operators
	4.2.9 EN and ENO

	4.3 Labels
	4.3.1 Global labels
	4.3.2 Local labels
	4.3.3 Label classes
	4.3.4 Setting labels
	4.3.5 Data types
	4.3.6 Expressing methods of constants

	4.4 Method for Specifying Data
	4.4.1 Bit data
	4.4.2 Word (16 bits) data
	4.4.3 Double word (32 bits) data
	4.4.4 Single-precision real/double-precision real data
	4.4.5 String data
	4.4.6 Time data
	4.4.7 Arrays
	4.4.8 Structures

	4.5 Device and Address
	4.5.1 Device
	4.5.2 Address
	4.5.3 Correspondence between devices and addresses

	4.6 Index Setting
	4.7 Libraries
	4.7.1 User libraries

	4.8 Precautions on Assigning a Name

	5. WRITING PROGRAMS
	5.1 ST
	5.1.1 Standard format
	5.1.2 Operators in ST language
	5.1.3 Syntax in ST language
	5.1.4 Calling functions in ST language
	5.1.5 Calling function blocks in ST language
	5.1.6 Precautions when using conditional syntax and iteration syntax

	5.2 Structured Ladder/FBD
	5.2.1 Standard format
	5.2.2 Ladder symbols in structured ladder/FBD language
	5.2.3 Executing order
	5.2.4 Ladder branches and compilation results
	5.2.5 Precautions on creating programs with structured ladder/FBD

	APPENDICES
	Appendix 1 Correspondence between Generic Data Types and Devices
	Appendix 2 Character Strings that cannot be Used in Label Names and Data Names
	Appendix 3 Recreating Ladder Programs
	Appendix 3.1 Procedure for creating a structured program
	Appendix 3.2 Example of creating a structured program

	INDEX
	WARRANTY

