MITSUBISHI

Mitsubishi Programmable Controller

MELSECME...... MELSEG/] . . (MEISEE-F

MELSEC-Q/L/F Structured
Programming Manual

Fundamentals

@ SAFETY PRECAUTIONS @

(Read these precautions before using this product.)

Before using MELSEC-Q, -L, or -F series programmable controllers, please read the manuals included with each
product and the relevant manuals introduced in those manuals carefully, and pay full attention to safety to handle
the product correctly.

Make sure that the end users read the manuals included with each product, and keep the manuals in a safe
place for future reference.

@CONDITIONS OF USE FOR THE PRODUCT@®

(1)

Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major
or serious accident; and

ii) where the backup and fail-safe function are systematically or automatically provided outside of
the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

The PRODUCT has been designed and manufactured for the purpose of being used in general
industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT

LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT,

WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR

LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR

USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS,

OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY

MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

* Nuclear Power Plants and any other power plants operated by Power companies, and/or any
other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.

+ Railway companies or Public service purposes, and/or any other cases in which establishment of
a special quality assurance system is required by the Purchaser or End User.

« Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as
Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation,
Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or
Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a
significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the
PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT
is limited only for the specific applications agreed to by Mitsubishi and provided further that no
special quality assurance or fail-safe, redundant or other safety features which exceed the general
specifications of the PRODUCTSs are required. For details, please contact the Mitsubishi
representative in your region.

A-2

REVISIONS

Jul., 2008

SH(NA)-080782ENG-A

The manual number is written at the bottom left of the back cover.

Revision

First edition

Jan., 2009

SH(NA)-080782ENG-B

Model Addition
QO0UJCPU, QO0OUCPU, Q01UCPU, Q10UDHCPU, Q10UDEHCPU,

Q20UDHCPU, Q20UDEHCPU, FX series

Addition
MANUALS

Correction
Generic Terms and Abbreviations in This Manual, Section 1.3, Section 4.3.3,

Section 4.3.4, Section 4.4.1, Section 4.4.2, Appendix 1

Jul., 2009

SH(NA)-080782ENG-C

Model Addition
QO00JCPU, QO00CPU, Q01CPU

Addition
Section 3.5, Section 3.6, Section 4.4, Section 4.4.1, Section 4.4.2, Section 4.4.3,
Section 4.4.4, Section 4.4.5, Section 4.4.6, Section 4.6, Section 4.8, Appendix 1

Correction

PURPOSE OF THIS MANUAL is changed to Section 1.2,

Generic Terms and Abbreviations in This Manual is changed to Section 1.3,
Section 1.5, Section 4.2.8, Section 4.3.4, Section 4.5 is changed to Section 4.4.7,
Section 4.5.2, Section 4.5.3, Section 4.6 is changed to Section 4.4.8,

Appendix 2, Appendix 3, Appendix 1 to 2 are changed to Appendix 2 to 3

Oct., 2009

SH(NA)-080782ENG-D

Correction
Section 1.3, Section 5.2.2, Appendix 2

Jan., 2010

SH(NA)-080782ENG-E

Model Addition
L02CPU, L26CPU-BT

Addition
CONDITIONS OF USE FOR THE PRODUCT

Correction
MANUALS, Section 1.2, Section 1.3, Section 1.5, Section 4.4.1, Section 4.4 .4,

Section 4.5.1, Section 4.5.2, Section 4.6

Apr., 2010

SH(NA)-080782ENG-F

Model Addition
Q50UDEHCPU, Q100UDEHCPU

Correction

Section 1.2, Section 1.3, Section 1.5, Appendix 2

Sep., 2010

SH(NA)-080782ENG-G

Correction
Section 4.4.7, Section 5.1.1, Section 5.1.3, Appendix 2

Jan., 2011

SH(NA)-080782ENG-H

Correction
Section 1.2, Section 5.1.1

Mar., 2011

SH(NA)-080782ENG-|

Addition
Section 4.2.5, Section 5.2.3, Section 5.2.4

Correction
Section 1.2, Section 4.2.2, Section 4.2.3, Section 4.2.4, Section 4.2.8,

Section 4.3.4, Section 4.4.4, Section 4.4.7, Section 4.6, Section 5.1.3,
Section 5.1.5

A-3

Print date Manual number

Jul., 2011

SH(NA)-080782ENG-J

Revision

Model Addition

L02CPU-P, L26CPU-PBT

Section 5.2.5

Section 1.3, Section 1.4, Section 1.5, Section 4.2.6, Section 4.2.7, Section 4.4.2,
Section 4.4.3, Section 4.4.4, Section 5.1.3, Section 5.1.6, Section 5.2,

Section 5.2.2

May, 2012

SH(NA)-080782ENG-K

"PLC" was changed to "programmable controller".

Model Addition

FX3Gc

Correction

INTRODUCTION, MANUALS, Section 1.2, Section 1.3, Section 1.5, Section 4.1.3,
Section 4.2.7, Section 4.3.5, Section 4.4.4, Section 4.4.6, Section 4.5.1,
Section 5.2.4, Appendix 2

Feb., 2013

SH(NA)-080782ENG-L

Overall revision due to addition of a Process CPU, Redundant CPU, Universal
model QCPU, and LCPU

Model Addition

QO02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU, Q12PRHCPU,
Q25PRHCPU, Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU,
Q26UDVCPU, L02SCPU, LO6CPU, L26CPU

Jul., 2013

SH(NA)-080782ENG-M

Model Addition

L02SCPU-P, LO6CPU-P, L26CPU-P, FX3s

Correction

Section 1.2, Section 1.3, Section 1.5, Section 4.3.5, Section 4.4.4, Section 4.6

Japanese manual version SH-080735-R

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may
occur as a result of using the contents noted in this manual.

© 2008 MITSUBISHI ELECTRIC CORPORATION

A-4

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q, -L, or -F series programmable controllers.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with
the programming specifications to handle the product correctly.

When applying the program examples introduced in this manual to an actual system, ensure the applicability and
confirm that it will not cause system control problems.

CONTENTS

SAFETY PRECAUTIONS ...ttt ettt e e s ettt e e s ettt e e s e sttt e e e ansbaeeeeaaasseeeeeaanssaeeeeeanssanesennsbeeaeeennsenas A-1
CONDITIONS OF USE FOR THE PRODUCGToitiiiiiiiiiieiiiitiee ettt s et ee e et e e e s snteeeaessnteeeeeesnseeeeeenneeas A-2
LY 151 N SRR A-3
INTRODUGCTION. ... e tttiee ittt ettt e ettt e e e ettt e e e e aatee e e e ettt e eeeeasteeeaeeaaseeeeeeasbeeeeeeanteeeeeeannbeaesansseeeeeeeanssneaesanns A-5
1010 N I =1V 1 TSRS UPPRP A-5
IVIAINUALS ...ttt ettt e e e ettt e e e e tt e et e e e saabe e e e e e aaabeeeeeeassseeeeeaassseeeeeansssaeeeeanssaeesansseeeeessnssnneeesannnreeans A-8

1. OVERVIEW 1-1t01-8
1.1 Overview 1-2
1.2 Purpose of This Manual 1-2
1.3 Terms 1-6
1.4 Features of Structured Programs 1-7
1.5 Applicable CPU Modules 1-8
1.6 Compatible Software Package 1-8

2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS 2-1t02-4
2.1 What is a Hierarchical Sequence Program? 2-2
2.2 What is a Structured Sequence Program? 2-3

3. PROCEDURE FOR CREATING PROGRAMS 3-1t03-2
3.1 Procedure for Creating Sequence Programs in Structured Project 3-2

4. PROGRAM CONFIGURATION 4-1t04-58
4.1 Overview of Program Configuration 4-2
g O I e o= RSP SPPI 4-3
4.1.2 Program filES.. ..ot e e e e e e e et e aaaa e e e e an e ——rrrraaaaaaaaas 4-3
g R T =] SR PPRRRRRT 4-4
4.2 POUs 4-5
N B Y/ o 1= T o L SRR 4-5
A e (oo = o [TP PRRR 4-6
2 T U o o1 1) o 1SR 4-6
S S U g o1 1T I][Yo € PR 4-7
O T O] 011 = (o] £ ST RPN 4-7
2 T = To (o 1= ol o] Yo R 4-8
4.2.7 Programming 1anguages for POUS..........coiiiiiiiiiiiiiie ettt a e 4-9
4.2.8 Functions, function blocks, and OPEratorsceoiiiiiiiiiiiiiiieeee e 4-10

4.2.9 ENANA ENO ...ttt ettt as 4-13
4.3 Labels 4-15
G Tt B €1 oo =1 I F= o= £SO 4-15
T o Yo | = 1 o =Y PSP 4-15
G TR T - o1 o = S USSP 4-16
4.3.4 SettiNg JADEISo e 4-17
S B = = I 1 o1 SRR 4-18
4.3.6 Expressing methods of CONSIANTScoiuiiiiiiii e 4-20
4.4 Method for Specifying Data 4-21
Oy N 11 o - | - TSRS 4-22
4.4.2 Word (16 DitsS) dataooiiiiiiiiie s 4-23
4.4.3 Double word (32 bitS) datal........coiciuiiieiiiiiie et 4-26
4.4.4 Single-precision real/double-precision real data.............cccooiiiiiiiii 4-29
R IS 1 0 To e F=1 = PRSPPI 4-33
T I o ¢ 1= 0 = = PRSPPI 4-34
O A N - £ PSRRI 4-35
448 STTUCIUIESoeiieiiiitee ettt e h et e bt e et eea et e e b et e et et e e en b et e be e e snn e e e neneees 4-37
4.5 Device and Address 4-38
o Tt B D = (= S P 4-38
4.5.2 AQAIESS.... et e e e e e e e e e e e e e e e e e e 4-39
4.5.3 Correspondence between devices and addreSSES...........ccooiiiiiiiiiiiiiiiiiieeeee e 4-40
4.6 Index Setting 4-43
4.7 Libraries 4-55
A I U ==Y] o] = 1o T PO PRUT PP PRRT 4 -56
4.8 Precautions on Assigning a Name 4 -57
5. WRITING PROGRAMS 5-1t05-20
51 ST 5-2
Lo 0t It RS = 1 o =1 o oy .0 F- | SRR 5-2
5.1.2 Operators iN ST IaNGUAGE.ciii ittt e sttt e e et e e e e e sneeeeesnnneeeeas 5-3
5.1.3 SyNtax in ST IaNQUAGE........uueiieeiiiiiiie ettt e e e sttt e e st e e e e sseaeeeeeansaeeeeesnnsneeeeeansseeeens 5-4
5.1.4 Calling functions iN ST INQUAGEccciiuiiiiiiiiiie e 5-9
5.1.5 Calling function blOCKS iN ST 1aNQUAGEcoiiiiiiiiiiiiie e e 5-10
5.1.6 Precautions when using conditional syntax and iteration syntax........c.ccccccoviiiiiiiiiicc, 5-11
5.2 Structured Ladder/FBD 5-13
L0720 TS = 1 o =1 o I o4 4T | SRR 5-13
5.2.2 Ladder symbols in structured ladder/FBD 1anguage...........ccccuuviiiieiieeeeee e 5-14
LR B = (Yo U1 (] T o] o L= RSP PPRRT 5-16
5.2.4 Ladder branches and compilation reSUlScooiiiiiii e 5-17
5.2.5 Precautions on creating programs with structured ladder/FBDcooocciiiiiiieie e, 5-19

A-6

Appendix 1Correspondence between Generic Data Types and Devices App - 2
Appendix 2Character Strings that cannot be Used in Label Names and Data Names App - 6
Appendix 3Recreating Ladder Programs App -9
Appendix 3.1Procedure for creating a structured programoccceieeeiiiiiiee i App -9
Appendix 3.2Example of creating a structured program............ccoccueeeiiiiiiiiie e App - 10

MANUALS

The manuals related to this product are listed below.
Please place an order as needed.

(1) Structured programming

Manual number
Manual name
(Model code)

MELSEC-Q/L Structured Programming Manual (Common Instructions)

Specifications and functions of common instructions, such as sequence instructions, basic instructions, | SH-080783ENG

and application instructions, that can be used in structured programs (13JW07)
(Sold separately)

MELSEC-Q/L Structured Programming Manual (Application Functions)
Specifications and functions of application functions that can be used in structured programs
(Sold separately)

SH-080784ENG
(13JW08)

MELSEC-Q/L Structured Programming Manual (Special Instructions)

Specifications and functions of special instructions, such as module dedicated instructions, PID control | SH-080785ENG

instructions, and built-in 1/O function instructions, that can be used in structured programs (13JW09)
(Sold separately)

FXCPU Structured Programming Manual [Device & Common]

Devices and parameters for structured programming provided in GX Works2 ‘JY(9027592265(;01
(Sold separately)

FXCPU Structured Programming Manual [Basic & Applied Instruction] JY997D34701

Sequence instructions for structured programming provided in GX Works2 (09R926)
(Sold separately)

FXCPU Structured Programming Manual [Application Functions] JY997D34801

Application functions for structured programming provided in GX Works2 (09R927)

(Sold separately)

(2) Operation of GX Works2

Manual number
Manual name
(Model code)
GX Works2 Version 1 Operating Manual (Common)
System configuration, parameter settings, and online operations of GX Works2, which are common to SH-080779ENG

Simple projects and Structured projects (13JU63)
(Sold separately)

GX Works2 Version 1 Operating Manual (Structured Project) SH-080781ENG
Operations, such as programming and monitoring in Structured projects, of GX Works2 13JUB5
(Sold separately) ()

GX Works2 Beginner’s Manual (Structured Project)

Basic operations, such as programming, editing, and monitoring in Structured projects, of GX Works2. SH-080788ENG

This manual is intended for first-time users of GX Works2. (13JZ23)
(Sold separately)

EIPOINT

Operating manuals in PDF format are stored on the CD-ROM of the software package. Printed
manuals are sold separately. To order manuals, please provide the manual number (model
code) listed in the table above.

A-8

1.1
1.2
1.3
1.4
1.5
1.6

OVERVIEW

OVIVIBW. . o o ot 1-2
Purpose of ThisManual 1-2
TeIMS L o 1-6
Features of Structured Programs 1-7
Applicable CPUModules 1-8
Compatible Software Package 1-8

1-1

OVERVIEW

STRUCTURED DESIGN OF
SEQUENCE PROGRAMS

PROCEDURE FOR
CREATING PROGRAMS

PROGRAM
CONFIGURATION

WRITING
PROGRAMS

APPENDICES

INDEX

1.1 Overview

This manual describes program configurations and content for creating sequence programs
using a structured programming method, and provides basic knowledge for writing programs.

1.2 Purpose of This Manual

This manual explains programming methods, programming languages, and other information
necessary for creating structured programs.

Manuals for reference are listed in the following table according to their purpose.

For information such as the contents and number of each manual, refer to the list of 'Related

manuals'.

(1) Operation of GX Works2

Purpose

GX Works2
Installation
Instructions

GX Works2
Beginner's Manual

GX Works2 Version 1
Operating Manual

Simple
Project

Structured
Project

Common

Simple
Project

Structured
Project

Intelligent
Function
Module

Installation

Learning the
operating
environment and
installation method

Details

Learning a USB
driver installation
method

Details

Operation of
GX Works2

Learning all functions
of GX Works2

Outline

Learning the project
types and available
languages in GX
Works2

Learning the basic
operations and
operating procedures
when creating a
simple project for the
first time

PEENS

Learning the basic
operations and
operating procedures
when creating a
structured project for
the first time

Details

Learning the
operations of
available functions
regardless of project
type.

Details

Learning the
functions and
operation methods
for programming

Details

Details

Learning data setting
methods for
intelligent function
module

Details

1-2

1.1 Overview

(2) Operations in each programming language
For details of instructions used in each programming language, refer to the section 3 on the
next page.

GX Works2 GX Works2 Version 1
Beginner's Manual Operating Manual

OVERVIEW

Purpose

Simple Structured Simple Structured
Project Project Project Project

Ladder

Details

Outline
_OQutine _

Simple

Project SFC

ST

Details

Outine

Ladder

SFC

Structured
Project

Structured ladder/
FBD

Details

ST

Outline

*1: MELSAP3 and FX series SFC only

1.2 Purpose of This Manual 1-3

(3) Details of instructions in each programming language (for QCPU (Q mode)/LCPU)

MELSEC- MELSEC- PﬂEt:;:ii?\ Manual for

Strﬂﬁﬂi’ed LLeHr oL L sEe oy ISt?'ucturedg module to
R TR Structured Programming Manual | Programming| Programming Manual -

Purpose I\?Ianual 9 Manual Programming| be used
Manual
. . Process

Common Special | Application| Common | PID Control _
Fundamentals Instructions | Instructions | Functions | Instructions | Instructions SFC Ins‘iz:gtri‘:alns

All
languages

Learning details of
programmable
controller CPU
error codes,
special relays, and
special registers

*1
Details

Using
ladder
language

Learning the types
and details of
common
instructions

Details

Learning the types
and details of
instructions for
intelligent function
modules

Learning the types
and details of
instructions for
network modules

Details

Learning the types
and details of
instructions for the
PID control
function

Learning the types
and details of the
process control
instructions

Details

Using SFC
language

Learning details of
specifications,
functions, and
instructions of SFC
(MELSAP3)

Details

Using
structured
ladder/FBD
/ST
language

Learning the
fundamentals for
creating a
structured program

Details

Learning the types
and details of the
common
instructions

Details

Learning the types
and details of
instructions for
intelligent function
modules

Details

Learning the types
and details of
instructions for
network modules

Details

Learning the types
and details of
instructions for the
PID control
function

Details

Learning the types
and details of
application
functions

Learning the types
and details of the
process control
instructions

Details

*1: Refer to the User's Manual (Hardware Design, Maintenance and Inspection) for the CPU module used.

1-4

1.2 Purpose of This Manual

(4) Details of instructions in each programming language (for FXCPU)

Purpose

MELSEC-
Q/L/F .
Structured FXCPU Strucltnuar:gari’rogrammmg FXCPU Programming Manual
Programming
Manual
FX1s, FX1N, | FX3s, FX3g,
. Basic & . . FXO, FXOS,
Device & ; Application FX2N, FXau,
Fundamentals Applied N FXon, FX1,
Common Instruction Functions FXU. FXaC FXi1Nc, Fx3Gc,
’ FX2ne FX3uc

Using ladder
language

Learning the types
and details of basic/
application
instructions,
descriptions of
devices and
parameters

Details

Using SFC
language

Learning details of
specifications,
functions, and
instructions of SFC

Details

Details

Using
structured
ladder/FBD/
ST
language

Learning the
fundamentals for
creating a structured
program

Details

Learning the
descriptions of
devices, parameters,
and error codes

Details

Learning the types
and details of
sequence
instructions

Details

Learning the types
and details of
application functions

Details

1.2 Purpose of This Manual

1-5

OVERVIEW

1.3 Terms

This manual uses the generic terms and abbreviations listed in the following table to discuss the
software packages and programmable controller CPUs. Corresponding module models are also

listed if needed.

Term

Description

GX Works2

GX Developer

GX IEC Developer

The product name of the software package for the MELSEC programmable controllers

Basic model QCPU

A generic term for the Q00JCPU, QO00CPU, and Q01CPU

High Performance model
QCPU

A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU

Process CPU

A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU

Redundant CPU

A generic term for the Q12PRHCPU and Q25PRHCPU

Universal model
QCPU

A generic term for the QOOUJCPU, QO0UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU,
QO3UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU,
QO6UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDEHCPU,
Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDEHCPU, Q50UDEHCPU, and
Q100UDEHCPU

High-speed Universal
model QCPU

A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU

QCPU (Q mode)

A generic term for the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant
CPU, and Universal model QCPU

A generic term for the LO2SCPU, L02SCPU-P, L02CPU, L0O2CPU-P, LO6CPU, LO6CPU-P, L26CPU,

LCPU
L26CPU-P, L26CPU-BT, and L26CPU-PBT
EXCPU A generic term for MELSEC-FX series programmable controllers
(FXos, FXo, FXon, FX1, FX1s, FX1N, FX1NC, FXu, FXac, FX2N, FXene, FX3s, FX3G, FX3ae, FX3u, FX3uc)
CPU module A generic term for the QCPU (Q mode), LCPU, and FXCPU
A generic term for the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU,
QnU(D)(H)CPU
Q13UDHCPU, Q20UDHCPU, and Q26UDHCPU
QnUDVCPU A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU
A generic term for the Q03UDECPU, Q04UDEHCPU, Q0O6UDEHCPU, Q10UDEHCPU,
QnUDE(H)CPU

Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU

Personal computer

The generic term for personal computers where Windows® operates

IEC 61131-3

The abbreviation for the IEC 61131-3 international standard

Common instruction

A generic term for the sequence instructions, basic instructions, application instructions, data link
instructions, multiple CPU dedicated instructions, multiple CPU high-speed transmission dedicated
instructions, and redundant system instructions

Special instruction

A generic term for the module dedicated instructions, PID control instructions, socket communication
function instructions, built-in I/O function instructions, and data logging function instructions

Application function

A generic term for the functions, such as functions and function blocks, defined in IEC 61131-3.
(The functions are executed with a set of common instructions in a programmable controller.)

1.3 Terms

1.4

Features of Structured Programs

This section explains the features of structured programs.

(1)

OVERVIEW

Structured design

A structured design is a method to program control content performed by a programmable
controller CPU, which are divided into small processing units (components) to create
hierarchical structures. A user can design programs knowing the component structures of
sequence programs by using the structured programming.

The following are the advantages of creating hierarchical programs.

» A user can start programming by planning the outline of a program, then gradually work
into detailed designs.

* Programs stated at the lowest level of a hierarchical design are extremely simple and
each program has a high degree of independence.

The following are the advantages of creating structured programs.

» The process of each component is clarified, allowing a good perspective of the program.
» Programs can be divided and created by multiple programmers.

» Program reusability is increased, and it improves the efficiency in development.

Multiple programming languages

Multiple programming languages are available for structured programs. A user can select
the most appropriate programming language for each purpose, and combine them for
creating programs.

Different programming language can be used for each POU.
Table 1.4-1 Programming languages that can be used for structured programs

Name Description

ST (structured text) A text language similar to C language, aimed for computer engineers.

Structured ladder A graphic language that is expressed in form of ladder by using elements such as contacts and coils.

FBD A graphic language that is expressed in form of ladder by connecting elements such as functions and
function blocks with lines.

For outlines of the programming languages, refer to the following section.

[5 Section 4.2.7. Programming languages for POUs

For details on each programming language, refer to the following chapter.

[Z5 Chapter 5. WRITING PROGRAMS

The ladder/SFC languages used in the existing GX Developer and Simple projects of GX
Works2 can be used.

For details on writing programs, refer to the following manuals.

[5~ Programming manuals for each CPU

Improved program reusability

Program components can be stored as libraries. This means program assets can be utilized
to improve the reusability of programs.

1.4 Features of Structured Programs 1-7

1.5 Applicable CPU Modules

The following table shows the applicable CPU modules for programs in the Structured project.
Table 1.5-1 Applicable CPU modules

Programmable controller type

Basic model QCPU QO00JCPU, Q00CPU, Q01CPU

High Performance model QCPU Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU
Process CPU QO02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU
Redundant CPU Q12PRHCPU, Q25PRHCPU

QO0UJCPU, QO0UCPU, Q01UCPU, Q02UCPU, Q03UDCPU,
QO3UDVCPU, QO3UDECPU, Q04UDHCPU, Q04UDVHCPU,
QO04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q0O6UDEHCPU,
Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU,
Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU,
Q26UDVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU
L02SCPU, L02SCPU-P, LO2CPU, LO2CPU-P, LO6CPU,
LO6CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT
FXos, FXo, FXoN, FX1, FX1s, FX1N, FX1NC, FXuU, FX2C, FX2N,
FXaNc, FX3s, FX3G, FX3ae, FX3u, FX3uc

Universal model QCPU

LCPU

FXCPU

1.6 Compatible Software Package

The following programming tool is used for creating, editing, and monitoring the programs in the
Structured project.

Table 1.6-1 Compatible software package

Software package name Model name
GX Works2 SW1DNC-GXW2-E

(1) Whatis GX Works2?

GX Works2 is a software package used for editing and debugging sequence programs,
monitoring programmable controller CPUs, and other operations. It runs on a personal

computer in the Microsoft® Windows® Operating System environment.

Created sequence programs are managed in units of 'projects’ for each programmable
controller CPU. Projects are broadly divided into 'Simple project' and 'Structured project'.

EPOINT

This manual explains the basic programming by referring the Structured project in
GX Works2.

1-8

1.5 Applicable CPU Modules

MIINGINO

STRUCTURED DESIGN OF SEQUENCE PROGRANS

SIWYY90ud JONIND3S

40 N9IS3A aFANLONYLS

SWYHO0dd ONILYIHD
¥04 F¥NA3I00Ud

2-2
2-3

What is a Hierarchical Sequence Program?.

21

2.2 Whatis a Structured Sequence Program?,

NOILVYHNOIINOD
NVHO0dd

SNVHO0dd
ONILIEIM

S30I1ANIddY

X3ANI

2-1

2.1 What is a Hierarchical Sequence Program?

The hierarchy is to create a sequence program by dividing control functions performed in a
programmable controller CPU into a number of levels.

In higher levels, the processing order and timing

in a fixed range is controlled.

With each move from a higher level to a lower level, control content and processes are
progressively subdivided within a fixed range, and specific processes are described in lower

levels.

In the Structured project, hierarchical sequence programs are created with the configuration that
states the highest level as the project, followed by program files, tasks, and POUs (abbreviation

for Program Organization Units).

4 N\
Project
. . .)
Program file (Operation preparation)
Task (Initialization) POUs
4 N
Initial process ‘,_ ..
“rreees e+ initial process
\ /,....
(" Program file (Station A))
Task (Station A control)
.as=spe=(Conveyor drive A
Conveyor drive A ‘"
Data process A
v.. ,LConveyor drive B
\ /’.,’
) o I Data process A
Program file (Station B) o B
0“‘
/ Task (Station B control))
Conveyor drive B saben Data process B
Data process B &7
N J
. Indicator output
(" Task (Indicator control) N _‘,.""‘
_“-"' o 4
Indicator output A‘
o J
o J
o J

2-2

2.1 What is a Hierarchical Sequence Program?

2.2 What is a Structured Sequence Program?

A structured program is a program created by components. Processes in lower levels of
hierarchical sequence program are divided to several components according to their processing
information and functions.

In a structured program design, segmenting processes in lower levels as much as possible is
recommended.

Each component is designed to have a high degree of independence for easy addition and
replacement.

[T
O w
==
32
Lo
a9
oE
I.I.In'
(qu
=
Sk
=2
=]
(=]
ww

The following shows examples of the process that would be ideal to be structured.

* A process that is used repeatedly in a sequence program.
* A process that can be divided into components.

A process that is used repeatedly in a sequence program

Control content in Control content in
a programmable controller CPU a programmable controller CPU

_| |__ DIV | Calls Process A I

o .
_| I__ |:|,> | Calls Process A I

[-
. | Calls Process A :
o |

ST

DIV
Structured 4

program

A process that can be divided into components

Divided Control a

Divided | Control 1 Structured
Control Control b program
content
ina
programmable Divided Control ¢
controller
CPU Control 2

Control d

2.2 What is a Structured Sequence Program? 2.3

MEMO

2-4

MIINGINO

PROCEDURE FOR CREATING PROGRAMS

SAYYO0dd JONINDIS
40 NOIS3a a3dNLONYLS

SINVYO0¥d ONILVIEI

¥04 JWNAID0Ud

o
™

Procedure for Creating Sequence Programs in Structured Project

3.1

NOILVYHNOIINOD
NVHO0dd

SNVHO0dd
ONILIEIM

S30I1ANIddY

X3ANI

3-1

3.1 Procedure for Creating Sequence Programs in
Structured Project

This section explains the basic procedure for creating a sequence program in the Structured

project.

(1) Creating the program configuration

Procedure

Create program files.

Create tasks.

(2) Creating POUs

{1

Procedure

Create POUs.

Define global labels.

Define local labels.

Edit the programs of each POU.

(3) Setting the programs

{1

Procedure
Register the POUs in the tasks.
(4) Compiling the programs
Procedure

Compile the programs.

Creating the program

Creating POUs

Setting the programs

Compiling
the programs

configuration
— Program file - POU E— r

Task 1
Program 1 » Function block 1
Program 2 »|Function block 2

Task 2
Program 3 > Function 1
Program 4 ™ Function 2

Program file

Task 1

Program 1

Program 2

Task 2

Program 3

Program 4

Sequence
program

3-2

3.1 Procedure for Creating Sequence Programs in Structured Project

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8

PROGRAM CONFIGURATION

Overview of Program Configuration 4-2
POUS . 4-5
Labels. . ..o 4-15
Method for SpecifyingData 4-21
Deviceand AdAresst 4-38
Index Setting. e 4-43
Libraries e 4-55
Precautions on AssigningaName 4-57

4-1

STRUCTURED DESIGN OF
SEQUENCE PROGRAMS

PROCEDURE FOR
Y CREATING PROGRAMS

=
<
14
[0}
@]
74
o

WRITING

OVERVIEW

z
(]
|_
<
4
=)
]
[’
=z
[e]
o

PROGRAMS

APPENDICES

INDEX

4.1 Overview of Program Configuration

A sequence program created in the Structured project is composed of program files, tasks, and
POUs.

For details of program components, refer to the following sections.
For projects: [~ Section 4.1.1 Project

For program files: [_=~ Section 4.1.2 Program files

For tasks: [~ Section 4.1.3 Tasks

For POUs: [Z 5~ Section 4.2 POUs

The following figure shows the configuration of program files, tasks, and POUs in the project.

| Project |
Program file 1 Program file 2 e Program file n
Task Task Task
POU POU POU
Program Program Program
POU POU POU
Program Program Program
POU
Task Program Task
POU POU
Program Program
POU
Program

4.1 Overview of Program Configuration

4.1.1 Project

A project is a generic term for data (such as programs and parameters) to be executed in a
programmable controller CPU.

One or more program files need to be created in a project.

4.1.2 Program files

One or more tasks need to be created in a program file. (Created tasks are executed under the
control of the program file.)

The execution types (such as scan execution and fixed scan execution) for executing program
files in a programmable controller CPU are set in the program setting of the parameter.

For details of the execution types set in the parameter, refer to the user's manual for the CPU
module used.

[Proiect |
Project
Program file 1 Program file 2 LI Program file n
Task Task Task)
g
POU POU POU 25
Program Program Program % %
oz
x Q
POU POU POU oo
Program Program Program
POU
Task Program Task
POU POU
Program Program
POU
Program
4.1 Overview of Program Configuration 4-3

4.1.1 Project

4.1.3 Tasks

A task is an element that contains multiple POUs, and it is registered to a program file.

One or more programs of POU need to be registered in a task. (Functions and function blocks
cannot be registered in a task.)

[Proiect |
Project
Program file 1 Program file 2 e Program file n
Task Task Task
POU POU POU
Program Program Program
POU POU POU
Program Program Program
POU
Task Program Task
POU POU
Program Program
POU
Program

(1) Task executing condition

The executing conditions in a programmable controller CPU are set for each task that is
registered to program files. Executing processes are determined for each task by setting the
executing condition.

The following are the types of task executing condition.

(a) Always (Default executing condition)
Executes registered programs for each scan.

(b) Event
Executes tasks when values are set to the corresponding devices or labels.

(c) Interval
Executes tasks in a specified cycle.

A priority can be set for each task execution.

@ Priority
When executing conditions of multiple tasks are met simultaneously, the tasks are
executed according to the set priority.
Tasks are executed in the order from the smallest priority level number.
Tasks set with a same priority level number are executed in the order of task data name.

4.1 Overview of Program Configuration
4.1.3 Tasks

4.2 POUs

A POU (abbreviation for Program Organization Unit) is a program component defined by each
function.

4.2.1 Types of POU

The following three types can be selected for each POU according to the content to be defined.

* Program
* Function
¢ Function block

Each POU consists of a program and local labels .

A process can be described in a programming language that suits the control function for each

POU.
Project
z
Program file g
<
| z5
Task g é
Registration o
L o £3
1
: <
] Program |
_____________________________________ -l
POU folder
POU
Program 4
POU
Function
POU
Function block

*1: Local labels are labels that can be used only in programs of declared POUs. For details
of local labels, refer to the following section.
5 Section 4.3.2 Local labels

4.2 POUs
4.2.1 Types of POU

4.2.2 Program

A program is an element that is stated at the highest level of POU.

Functions, function blocks, and operators are used to edit programs.

Program Function

Function block

Operator

Sequence programs executed in a programmable controller CPU are created by programs of
POU.

For a simplest sequence program, only one program needs to be created and registered to a
task in order to be executed in a programmable controller CPU.

Programs can be described in the ST or structured ladder/FBD language.

4.2.3 Functions

Functions and operators are used to edit functions.

Functions can be used by calling them from programs, functions, or function blocks.

Function Function

Operator

Functions always output same processing results for same input values.

By defining simple and independent algorithms that are frequently used, functions can be reused
efficiently.

Functions can be described in the ST or structured ladder/FBD language.

4.2 POUs
4.2.2 Program

4.2.4 Function blocks

Functions, function blocks, and operators are used to edit function blocks.

Function blocks can be used by calling them from programs or function blocks. Note that they
cannot be called from functions.

Function block Function

Function block

Operator

Function blocks can retain the input status since they can store values in internal and output
variables. Since they use retained values for the next processing, they do not always output the
same results even with the same input values.

Function blocks can be described in the ST or structured ladder/FBD language.

@ Instantiation
Function blocks need to be instantiated to be used in programs.
For details of instantiation, refer to the following section.
[= Section 4.2.8 Functions and function blocks

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

EIPOINT

Instances are variables representing devices assigned to labels of function
blocks.
Devices are automatically assigned when instances are created with local labels.

4.2.5 Operators

Operators can be used by calling them from programs, functions, or function blocks.

Operators cannot be edited.

Operators always output same processing results for the same input values.

4.2 POUs
4.2.4 Function blocks

4.2.6 Ladder blocks

In the structured ladder/FBD language, a program is divided into units of ladder blocks.
In the ST language, ladder blocks are not used.
@ Ladder block labels

A ladder block label can be set to a ladder block. A ladder block label is used to indicate a
jump target for the Jump instruction.

dreut] e
| plab_1 -
i
2 -
Input? OutputT -
tl """" T e =
o | rputd - Outgut?
A \E“)
i
Ladder block label Jump instruction Ladder block
4.2 POUs

4.2.6 Ladder blocks

4.2.7 Programming languages for POUs

Two types of programming language are available for programs of POU.

The following explains the features of each programming language.

(1) ST: Structured text

Control syntax such as selection branch by conditional syntax or repetitions by iterative
syntax can be described in the structured text language, as in the high-level language such
as C language. Clear and simple programs can be written by using these syntax.

intv2 = ABS(intv1);

IF M1 THEN

btn01 = TRUE;
ELSE

htno1 = FALSE;
END_IF;

Output_ EMNO ;= ENEG(DtnOT, Input1);

(2) Structured ladder/FBD: (ladder diagram)

P4
The structured ladder or FBD is a graphical language developed based on the relay ladder 2
. . . <
programming techmque..Ths.ay are commonly used for the sequence programming because =c
they can be understood intuitively. e
oz
« Structured ladder £8
- Mainkbtn Alarrr Openk - - - - o - Door- - - - - -
I 1 . I+ 1 e -
................ B OELSI T
xﬂ ABS_E EnDD1
J | EM EMO B T
------- Inputl —{ 21N ——Outputl - - - -
» FBD
..... AND OR
g_bDDHz— WP OO
g_booll3— : -+ g_hoold— N
g_bDD”4— e
...................... MUL_E ‘
.......... AND ‘ (= ENO|—-------
---------- — g_bool1s - g_intl — I 0_int3
....... g_bDDH‘] — P g_|n12— _|N P
4.2 POUs

4.2.7 Programming languages for POUs

4.2.8 Functions, function blocks, and operators

The following table shows differences among functions, function blocks, and operators.

Table 4.2.8-1 Differences among functions, function blocks, and operators

Item

Function

Function block

Operator

Output variable assignment

Cannot be assigned

Can be assigned

Cannot be assigned

Internal variable

Not used

Used

Not used

Creating instances

Not necessary

Necessary

Not necessary

(1) Output variable assignment
A function always outputs a single operation result. A function that does not output any
operation result or outputs multiple operation results cannot be created.

A function block can output multiple operation results. It also can be created without any

output.

An operator always outputs a single operation result. It cannot be edited.

Table 4.2.8-2 Output variable

assignment

Function

Function block

Operator

Example

ABS

ADD_TIME
1N
Iz

Instance

Outputs one SR
operation result =1

CTD
D

LOAD
Py

iTim
ISt

[nstance

[netance

SAMPLE_F E'
M _Bool

Qutnuts multiple
Qulputs muilipie

operation results

o

C

Without any output

Outputs one
operation result

ADD

OR

4-10

4.2 POUs

4.2.8 Functions, function blocks, and operators

(2) Internal variables

A function does not use internal variables. It uses devices assigned directly to each input
variable and repeats operations.

(a) A program that outputs the total of three input variables (When using a function (FUN1))

Function
X0 —
D109 — D109
+ —» | FUN1 | —— D120
D110 — D110
+
D111 — D111

A function block uses internal variables. Different devices are assigned to the internal
variables for each instance of function blocks.

(b) Programs that output the total of three input variables (When using function blocks)

Instance A Instance B
P4
Function block Function block 8
<
D10 — | D6200 D10 — | D6210 g%
+ — D6203| — D13 + — D6213| — D13 ¥
D11 — | D6201 D11 — | D6211 0. O
+ +
D12 — | D6202 D12 — | D6212
4.2 POUs

4.2.8 Functions, function blocks, and operators

(3) Creating instances
When using function blocks, create instances to reserve internal variables.
Variables can be called from programs and other function blocks by creating instances for
function blocks.

To create an instance, declare as a label in a global label or local label of POU that uses
function blocks. Same function blocks can be instantiated with different names in a single

POU.

Instance A

D10 —

D11 —

D12 —

Function block

D6200

Input label1

D6201 +

D6203
— |Output label

Input label2

D6202 + D6204

[Input label3] [Local label

I— D13

Uses same internal variables
for same instances

Instance A

D10 —

D11 —

D12 —

Function block

D6200

Input label1

D6201 +

D6203
— | Output label

Input label2

D6202 + D6204

[Input label3 | [Local label

— D13

Uses different

internal variables

for different instances

Instance B

D10 —

D11 —

D12 —

Function block

I— D13

D6210

Input label1 D6213
D6211 + — |Output label
Input label1

D6212 + D6214

[Input label1] |[Local label

Function blocks perform operations using internal variables assigned to each instance.

EIPOINT

If the same function is called in the circuit multiple times, the value of internal
variables or output variables is overwritten everytime the function is called. To
hold the value of internal variables or output variables when the function is called,
edit programs to use function blocks or to save the values as different valuables.

4-12

4.2 POUs

4.2.8 Functions, function blocks, and operators

4.2.9 EN and ENO

An EN (enable input) and ENO (enable output) can be appended to a function and function block

to control their execution.

A Boolean variable used as an executing condition of a function is set to an EN.

A function with an EN is executed only when the executing condition of the EN is TRUE.

A Boolean variable used as an output of function execution result is set to an ENO.

ABE_E
Function_Enahle ErM EMOD Enable_Dut
I

The following table shows the status of ENO and the operation result according to the status of

EN.
Table 4.2.9-1 Status of ENO and the operation result according to the status of EN

EN ENO Operation result
TRUE (No operation error) Operation output value
TRUE (Operation execution)
FALSE (Operation error) Undefined value
FALSE (Operation stop) FALSE Undefined value

EIPOINT

1. A setting of an output label to an ENO is not essential.
2. As for application functions, functions with an EN are shown as ‘Function
name_E’.

4.2 POUs
4.2.9 EN and ENO

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

@® Usage example of EN and ENO

EN EMNOD - ® - -
D _IM —D1a -
01— _IM S
Yariahle_1- ‘@ - - - - ADDE |- -
|} EN END -~ ®
o O _IM —D0 -
01 —— I Lo
Yariable_1: AND @ | _ADDLE |
A EM EMNO — ®
Yariable 2 —— Dq— _IM ——D1a -
P 05 1M Lo
Watiakle_1 ADDE | @ - MULE @ ADDE
|} EM EMOD - EM EMNO ENM EMO — &
SRR DO — _IM _IM _Inl —n2 -
D71 —— _IM D3— _IM O — M R
No Control description
When the EN input is directly connected from the left power rail, the EN input is always TRUE and
® the instruction is always executed.
If the ADD_E instruction is used in this manner, the operation result is the same as the ADD
instruction without the EN input.
® When Variable_1 is connected to the EN input, the instruction is executed when Variable_1 is
TRUE.
® When the result of Boolean operation is connected to the EN input, the instruction is executed
when the result of Boolean operation is TRUE.
@ When the ENO outputs are connected to the EN inputs, three instructions are executed when
Variable_1 is TRUE.
® When the ENO outputs are not connected, the execution result of the instruction is not output.
4-14 4.2 POUs

4.2.9 EN and ENO

4.3 Labels

Labels include global labels and local labels.

4.3.1 Global labels

The global labels are labels that can be used in programs and function blocks.

In the setting of a global label, a label name, a class, a data type, and a device are associated
with each other.

4.3.2 Local labels

The local labels are labels that can be used only in declared POUs. They are individually defined
per POU.

In the setting of a local label, a label name, a class, and a data type are set.

For the local labels, the user does not need to specify devices. Devices are assigned
automatically at compilation.

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

4.3 Labels
4.3.1 Global labels

4.3.3 Label classes

The label class indicates from which POU and how a label can be used. Different classes can be
selected according to the type of POU.

The following table shows label classes.

Table 4.3.3-1 Label classes

Applicable POU

Class Description . Function
Program Function

block
Common label that can be used in programs and function
VAR_GLOBAL @) X @)
blocks
VAR_GLOBAL_ Common constant that can be used in programs and function o % o
CONSTANT blocks
Label that can be used within the range of declared POUs
VAR @) O O

This label cannot be used in other POUs.

Constant that can be used within the range of declared POUs
VAR_CONSTANT i) O O O
This constant cannot be used in other POUs.

Latch type label that can be used within the range of declared

VAR_RETAIN"' POUs o x o
This label cannot be used in other POUs.

Label that receives a value
VAR_INPUT)) X O
This label cannot be changed in a POU.

VAR_OUTPUT Label that outputs a value from a function block X X

Local label that receives a value and outputs the value from a
VAR_IN_OUT POU X X O
This label can be changed in a POU.

*1: Not supported by FXCPU.

EIPOINT

* Input variables, output variables, and input/output variables
VAR _INPUT is an input variable for functions and function blocks, and
VAR _OUTPUT is an output variable for function blocks.
VAR_IN_OUT can be used for both input and output variables.

Instance
VAR_INPUT VAR_OUTPUT
=3 Al
100
o0 o1an
VAR_IN_OUT

4.3 Labels
4.3.3 Label classes

4.3.4 Setting labels

Labels used in a program require setting of either global label or local label.

The following describes setting examples of the arguments g_int1 and g_int2 of the DMOV
instruction.

| X0 DMOV
|| EN ENO -
| g_int1 —s d— g_int2

@ Using the arguments of the DMOV instruction as global labels
Set the Class, Label Name, Data Type, Device, and Address.

Clagz Label Mame [rata Tupe Conztant Device Addrezs Comment
1 [WaR_GLOBAL | g_int wiord[Signed] oo 0.0
2 |WaR_GLOBAL ~ |g_int2 ward[Signed] D10 Zhw010
3 -

@ Using the arguments of the DMOV instruction as local labels
Set the Class, Label Name, and Data Type.

Clagz Label Name Data Type Congztant Device Address Comment

1 |VaR * |g_int1 Word[Signed]
2 VAR * |g_int2 Word[Signed]

3 hd =

(]

2

sg

O

8%

25

oo

4.3 Labels
4-17

4.3.4 Setting labels

4.3.5 Data types

Labels are classified into several data types according to the bit length, processing method, or
value range.
(1) Elementary data types

The following data types are available as the elementary data type.*1

+ Boolean type (bit): Represents the alternative status, such as ON or OFF.

* Bit string type (word (unsigned)/16-bit string, double word (unsigned)/32-bit string):
Represents bit arrays.

* Integer type (word (signed), double word (signed)): Handles positive and negative integer
values.

 Real type (single-precision real, double-precision real): Handles floating-point values.
« String type (character string): Handles character strings.
» Time type (time): Handles numeric values as day, hour, minute, and second (in

millisecond).
Table 4.3.5-1 Elementary data types
Elementary data type Description Value range Bit length
Bit Boolean 0 (FALSE), 1 (TRUE) 1 bit
Word (signed) Integer -32768 to 32767 16 bits
Double word L .
) Double-precision integer -2147483648 to 2147483647 32 bits
(signed)
Word (unsigned)/16-bit string 16-bit string 0 to 65535 16 bits
Double word (unsigned)/32-bit L .
. 32-bit string 0 to 4294967295 32 bits
string
Single-precision real 2 Real 2128 o 2126 2126 15 2128 32 bits
Double-precision real Double-precision real 21024t 21022 g 1022 51024 64 bits
String™ Character string Maximum 255 characters Variable
. . T#-24d20h31m23s648ms to .
Time™ Time value 32 bits
T#24d20h31m23s647ms

*1: The following data types cannot be used for the structured ladder/FBD/ST language.

They can be only used for the ladder language.
« Timer data type: Handles programmable controller CPU timer devices (T).
* Retentive timer data type: Handles programmable controller CPU retentive timer devices (ST).
» Counter data type: Handles programmable controller CPU counter devices (C).

« Pointer data type: Handles programmable controller CPU pointer devices (P).

*2:
*3:
: The FX3u and FX3uc support this data type.
*5:

*4

The FX3s, FX3G, FX3Gc, FX3u, and FX3uc support this data type.
The Universal model QCPU and the LCPU support this data type.

This data type is used in time type operation instructions of application function.
For details of the application functions, refer to the following.

[5 MELSEC-QIL Structured Programming Manual (Application Functions)

[5 FXCPU Structured Programming Manual [Application Functions]

4-18

4.3 Labels

4.3.5 Data types

(2) Generic data types

Generic data type is the data type of labels summarizing some elementary data types. Data
type name starts with '"ANY".

ANY data types are used when multiple data types are allowed for function arguments and
return values.

Labels defined in generic data types can be used in any sub-level data type.

For example, if the argument of a function is ANY_NUM data type, desired data type for an
argument can be specified from word (signed) type, double word (signed) type, single-
precision real type, and double-precision real type.

Arguments of functions and instructions are described using generic data types, in order to
be used for various different data types.

The following figure shows the types of generic data type and their corresponding
elementary data types.

ANY
|
v v v
ANY_SIMPLE Array™! Structure? z
o
| g
v v v v ok
r O
ANY_NUM ANY_BIT Time String QL
x Q
| o O
Bit
ANY_REAL ANY_INT
sinl Word
ingle- Word (unsigned)/ The hi '] ;
i / 16-bit stri e higher 'ANY" data types include sub-level data types.
prercgzlon (signed) ' siring The highest 'ANY"' data type includes all data types.
Double word
Double- Double (unsigned)/
precision word 32-bit string
real (signed)
ANY16 ANY32
Word Word Double word Double
(unsigned)/ vor d (unsigned)/ word
16-bit string (signed) 32-bit string (signed)

*1: For arrays, refer to the following section. [Z=~ Section 4.4.7 Arrays
*2: For structures, refer to the following section. [Z =~ Section 4.4.8 Structures

4.3 Labels

4.3.5 Data types 4-19

4.3.6 Expressing methods of constants

The following table shows the expressing method for setting a constant to a label.

Table 4.3.6-1 Constant expressing method

4-20

Constant
Expressing method Example
type
Bool Input FALSE or TRUE, or input 0 or 1. TRUE, FALSE
Binary Append "2#' in front of a binary number. 2#0010, 2#01101010
Octal Append '8#' in front of an octal number. 8#0, 8#337
Decimal Directly input a decimal number, or append 'K' in front of a decimal number. 123, K123
. Append '"16#' or 'H' in front of a hexadecimal number.
Hexadecimal . o . 16#FF, HFF
When a lowercase letter 'h' is appended, it is converted to uppercase automatically.
Real number | Directly input a real number, or append 'E' in front of a real number. 2.34,E2.34
Character . L . .
i Enclose a character string with single quotations (') or double quotations ("). 'ABC', "ABC"
string
T#1h,
Time Append ‘T# in front.
T#1d2h3m4s5ms
4.3 Labels

4.3.6 Expressing methods of constants

4.4 Method for Specifying Data

The following shows the six types of data that can be used for instructions in CPU modules.

Data that can be handled by
CPU module

[Bitdata] ooeeeeeereeriienn Section 4.4.1
+—— Numeric data Integer data

Real number data —;

— Character string data) ... Section 4.4.5

....Section 4.4.6

—{Word (Signed) data

..... Section 4.4.2

real data

real data

— Single-precision

—— Double-precision

—! Double word (Signed) data | .. Section 4.4.3

Section 4.4.4 (1)

Section 4.4.4 (2)

4.4 Method for Specifying Data

4-21

P4
o
2
25
¥ O
8%
o)
oo

4.4.1 Bitdata
Bit data are data handled in units of 1 bit, such as contacts and coils.
'Bit devices' and 'bit-specified word device' can be used as bit data.

(1) Using bit devices
A bit device is specified in unit of one point.

Mo SET
—EN ENOF
dF—Y10

> One point of MO is
the target bit device

One point of Y10 is
the target bit device

(2) Using word devices

(@)

(b)

By specifying a bit number for a word device, 1/0 of the specified bit number can be
used as bit data.

b15 to b0
Word device |{1/0 11/0 11/0 {1/0 11/0 {1/0 {1/0 }1/0 {1/0 {1/0 }1/0 ;1/0 11/0 :1/0 ;| 1/0 | 1/0

T—» Each bit of a word device can be

used (1=ON, 0=0OFF)

". (Bit number is

Specify a bit device of word device as | Word device | | Bit number
specified in hexadecimal.)

For example, bit 5 (b5) of DO is specified as D0.5 and bit 10 (b10) of DO is specified as
DO0.A. Note that bit specifications are not applicable for timers (T), retentive timers (ST),
counters (C), and index registers (Z). (Example: Z0.0 is not available).

M SET [(ume ON bit 5 (5) 1 DO
d—DO0.5
» Bit-specified word device
D0.5 SET (Turns ON/OFF according to the
| | EN ENO status (1/0) of bit 5 (b5) of DO)
dr—Y10
POINT

For FXCPU, bit specification of a word device can be used for FX3uU and FX3uc.

4-22

4.4 Method for Specifying Data
4.4.1 Bit data

4.4.2 Word (16 bits) data

Word data are 16-bit numeric value data used in basic instructions and application instructions.

The following shows the two types of word data that can be handled in CPU modules.

¢ Decimal constants -32768 to 32767
« Hexadecimal constants 000OH to FFFFH

For word data, word devices and digit-specified bit device can be used.

Note that word data cannot be specified using digit specification for direct access inputs (DX) and
direct access outputs (DY). (For direct access inputs and direct access outputs, refer to the
User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.)

(1) Using bit devices

(a) By specifying digits of bit devices, word data can be used.

Specify digits of bit data as 'Number of digits| | Start number of bit device |'. Digits can be
specified in the range from K1 to K4 in unit of 4 points (4 bits). (For a link direct device,

specify as 'J [Network No.|\[Number of digits| | Start number of bit device |'. To specify X100 to
X10F of Network No.2, specify as J2\K4X100.)
The following are the examples of the target points when digits are specified for X0.

QCPU (Q mode)/LCPU

+ K1XO0....... 4 points of X0 to X3

+ K2XO0....... 8 points of X0 to X7

+ K3XO0....... 12 points of X0 to XB
+ K4XO0....... 16 points of X0 to XF

P4
o
2
25
¥ O
8%
o)
oo

FXCPU
For FXCPU, the device numbers of input/output (X, Y) is assigned in octal.

+ K1XO0....... 4 points of X0 to X3
+ K2X0....... 8 points of X0 to X7
+ K3XO0....... 12 points of X0 to X13
K4Xx0....... 16 points of X0 to X17

XF to XC XB to X8 X7 to X4 X3 to X0

]

K1 specification
range |

(4 points)

K2 specification range
(8 points)

A

K3 specification range
(12 points)
K4 specification range
(16 points)

y

Figure 4.4.2-1 Digit specification setting range of word data (16 bits)

4.4 Method for Specifying Data 4-23
4.4.2 Word (16 bits) data

(b) The following table shows the numeric values that can be used as source data when
digits are specified at the source ®.

Table 4.4.2-2 List of digit specification and numeric values that can be used

Number of specified
_ Value range
digits
K1 (4 points) Oto 15
K2 (8 points) 0 to 255
K3 (12 points) 0 to 4095
K4 (16 points) -32768 to 32767

(c) When the destination is a word device
For the word device at the destination side, Os are stored as the status of bit devices
which follow the digit-specified bit devices at the source side.

Ladder example Processing
Instruction that processes 16-bit data | KXo
X010 MOV —
EN ENO[- Os are stored @
KIX0—s d—Do T —— b4 b3 b2 b1 b0
polololololololololololo]olxslx2xixd

SourceT@

Figure 4.4.2-2 Ladder example and processing details

(d) When digits are specified at the destination @, the points by digit specification are the
target of destination.
The status of bit devices which follow the digit-specified bit devices is not changed.

Ladder example Processing
When the source ® is a numeric value | 1 2 3 4
/—/ﬁ—/ﬁ—%{—%
H1234{ 00/ 0[1]0]o0]1]0]0]0]1][1]0] 1] 0] 0]
X010 MOV
EN ENO b
H1234 —s d — K2MO0 M15-------------- M8M7-------==-==---- MO
kwvo | | | | | | | [ofo[1]1]0[1]0]0]
Destination @ P N N —]
Not changed 3 4
When the source (® is a word device ‘ (YT SR] 7 b0
po[1[1]1]o[1]o[1]0]1][ol0[1][1]1]0]1]
X010 MOV
EN ENO b
DO—s d — K2M100 M115 ----------- M108 M107 ----------- M100
kawoo| | [[[[[[[1]ofo[1][1][1[o]1]
Destination @
Not changed

Figure 4.4.2-3 Ladder example and processing details

4-24 4.4 Method for Specifying Data
4.4.2 Word (16 bits) data

(2) Using word devices
A word device is specified in unit of one point (16 bits).

X010 MOV
EN ENO[
100—s d—DO0

}

One point (16 bits) of DO
is the target word device

EIPOINT

1. When performing the process with digit specification, a desired value can be
used for the start device number of bit devices.
2. Digits cannot be specified for direct access inputs/outputs (DX, DY).

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

4.4 Method for Specifying Data 4-25
4.4.2 Word (16 bits) data

4.4.3 Double word (32 bits) data

Double word data are 32-bit numeric value data used in basic instructions and application
instructions.

The following shows the two types of double word data that can be handled in CPU modules.
* Decimal constants -2147483648 to 2147483647
* Hexadecimal constants 00000000H to FFFFFFFFH

For double word data, word devices and digit specification for bit devices can be used.

Note that double word data cannot be specified using digit specification for direct access inputs
(DX) and direct access outputs (DY).

(1) Using bit devices

(a) By specifying digits of bit devices, double word data can be used.

Specify digits of bit data as '[Number of digits| | Start number of bit device |'. (For a link direct

device, specify as 'J ’Network No.NNumber ofdigits‘ ’ Start number of bit device ". To specify
X100 to X11F of Network No.2, specify as J2\K8X100.)

Digits cannot be specified in the range from K1 to K8 in unit of 4 points (4 bits).
The following are the examples of the target points when digits are specified for X0.

QCPU (Q mode)/LCPU

+ K1X0...... 4 points of X0 to X3 * K5XO0...... 20 points of X0 to X13
« K2XO0...... 8 points of X0 to X7 * K6XO0...... 24 points of X0 to X17
+ K3XO0...... 12 points of X0 to XB + K7XO0...... 28 points of X0 to X1B
* K4XO0...... 16 points of X0 to XF + K8XO...... 32 points of X0 to X1F
FXCPU

For FXCPU, the device numbers of input/output (X, Y) is assigned in octal.

+ K1X0...... 4 points of X0 to X3 * K5XO...... 20 points of X0 to X23
+ K2X0...... 8 points of X0 to X7 * K6XO0...... 24 points of X0 to X27
+ K3XO0...... 12 points of X0 to X13 + K7XO0...... 28 points of X0 to X33
+ K4XO0...... 16 points of X0 to X17 + K8XO...... 32 points of X0 to X37

LT LTI

X1CX1B X18X17 X14X‘I3‘X“IO‘XF‘ ‘ ‘XC‘XB’ ‘ ‘XS‘X7‘ ’ ‘)(4‘X3‘ ‘ ‘XO|
K1

specification
range

——e
(4 points)
K2 specification
range
(8 points)
K3 specification range
(12 points)
K4 specification range
(16 points)
K5 specification range
(20 points)
K6 specification range
(24 points)
K7 specification range
(28 points)
K8 specification range
(32 points)

A

Figure 4.4.3-1 Digit specification setting range of double word data (32 bits)

4-26

4.4 Method for Specifying Data
4.4.3 Double word (32 bits) data

(b) The following table shows the numeric values that can be used as source data when
digits are specified at the source ®.

Table 4.4.3-1 List of digit specification and numeric values that can be used

Number of Number of specified
. . Value range . Value range
specified digits digits
K1 (4 points) 0to15 K5 (20 points) 0 to 1048575
K2 (8 points) 0 to 255 K6 (24 points) 0to 16777215
K3 (12 points) 0 to 4095 K7 (28 points) 0 to 268435455
K4 (16 points) 0 to 65535 K8 (32 points) —2147483648 to 2147483647

(c) When the destination is a word device
For the word device at the destination side, Os are stored as the status of bit devices
which follow the digit-specified bit devices at the source side. (Data_s:K1XO0,

Data_d:DO0)
Ladder example Processing
Instruction that processes 32-bit data K1X0
%—/
Os are stored
X10 DMOV @
li EN ENO | b1 ------- - b4 b3 b2 b1 b0
Data s—|S d — Data_d D0|0|0|0|0(0[{0|0|0|0|0|0|0|X3X2[X1X0
D1|0|0|0|0|0|0|O|0O|O|0O|0O|O|0O|0O|O|O %
b31----- - b16 =
Source (s) . %
Os are stored o
[T
P4
@)
8}

=
<
o
Q
@]
o
o

Figure 4.4.3-2 Ladder example and processing details

(d) When digits are specified at the destination (©, the points by the specified digit are the
target of destination. (Data_d1:K5M0, Data_d2:K5M10, Data_s:D0)
The status of bit devices which follow the digit-specified bit devices is not changed.

Ladder example Processing
When the source ® is a numeric value ‘ H78123456
[o[o[1]1]0[1]o]oo[1]o[1]0[1][1]0]
-~
3 4 5 6
[o[1][1]1[1[o[o]o]o[o[o[1]0[0[1]0]
X10 DMOV R S e e
EN ENO[- KEMO 7 8 @ 1 2
H78123456 —s d |— Data_d1 M MBMT e "o
o [o[o[1]1]o[1]o]o[o[1]0[1]0[1[1]0]
Destination @

K] e ellleielelet M20M19- - - -M16
[LTI TTTT Jofoft]o]

Not changed
When the source ® is a word device ‘ 15 - b8 b7 - - -mmm e b0
po[1][1]1]ofo]1]o]o]o[1]0][1][1]1]0]1]
p15 <= === ------ b8 b7 -----=-----=-- bo
p1{olo[1][1]ol1]olo][1]o[o]1][0]1]1]1]

X10 DMOV

——EN ENO[- O
Data_s—S d — Data_d2 M25-———— - - - MABMAT- ==~ == -~ M10
[1[1[1]ofo[1]olo[o[1]o[1[1[1]0]1]
Destination () e ——— M30M29 - - - - M26
LTI T T T Jo[a]a]d]

Not changed

Figure 4.4.3-3 Ladder example and processing details

4.4 Method for Specifying Data 4-27
4.4.3 Double word (32 bits) data

EIPOINT

1. When performing the process with digit specification, a desired value can be
used for the start device number of bit devices.
2. Digits cannot be specified for direct access inputs/outputs (DX, DY).

(2) Using word devices

Devices used in lower 16 bits are specified for a word device.
'Specified device number' and 'specified device number +1' are used for instructions that
process 32-bit data.

MO DMOV > Transfers 32-bit data
F—EN ENO
100—s dr—DO0

f

Two points (32 bits) of DO and D1
are the target word devices

4-28 4.4 Method for Specifying Data
4.4.3 Double word (32 bits) data

4.4.4 Single-precision real/double-precision real data

Single-precision real/double-precision real data are 32-bit floating-point data used in basic
instructions and application instructions.

Real number data can be stored only in word devices.

For FXCPU, double-precision real data is not supported.

(1) Single-precision real (single-precision floating-point data)
Devices used in lower 16 bits are specified for instructions that use real number data.

Real number data are stored in 32 bits of 'specified device number' and 'specified device number +1'.

MO EMOV —+——— Transfers real number data
——EN ENO

Var R100—|s d — Vvar D0— Two points (32 bits) of DO and D1
T - are the target word devices

Two points (32 bits) of R100 and R101 are the target word devices

Floating-point data are represented by two word devices.
[Sign] 1. [Fraction] x 2 [Exponent]

The following explains the bit configuration and its meaning when floating-point
data are internally represented.

RN NN NN .

b31 b30 to b23 b22 to b16 b15 to b0
w_/
b31 b23 to b30 b0 to b22

Sign Exponent Fraction

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

* Sign
b31 represents a sign.
0: Positive
1: Negative

* Exponent

b23 to b30 represent n of 2".
The values of n are as follows according to BIN values of b23 to b30.

b23 to b30 FFH FEH| FDH % 81H | 80H | 7FH | 7EH % 02H | O1H 00H

n Notused| 127 | 126 % 2 1 0 -1 % -125 |-126 | Not used

* Fraction
23 bits of b0 to b22 represent a value of XXXXXX... when the fraction is
expressed as 1. XXXXXX... in binary.

(2) Double-precision real (double-precision floating-point data)
Devices used in lower 16 bits are specified for instructions that use real number data.
Real number data are stored in 64 bits of 'specified device number' and 'specified device
number + 3'.

4.4 Method for Specifying Data 4-29
4.4.4 Single-precision real/double-precision real data

MO EDMOV }———» Transfers real number data
F—EN ENO

Var_R100 — d — Var_DO0 — Four points (64 bits) of DO, D1, D2, and D3
are the target word devices

Four points (64 bits) of R100, R101, R102, and R103 are the target word devices

1) Floating-point data are represented by four word devices.
[Sign] 1. [Fraction] x 2 [Exponent]
The following explains the bit configuration and its meaning when floating-point
data are internally represented.

LS TSyl

b63 b62 to b52 b51 to b16 b15 to b0
——
b63 b52 to b62 b0 to b51
Sign Exponent Fraction
+ Sign
b63 represents a sign.
0: Positive
1: Negative
* Exponent

b52 to b62 represent n of 2".
The values of n are as follows according to BIN values of b52 to b62.

b52tob62 | 7FFH |7FEH|7FDH S% 400H | 3FFH| 3FEH|3FDH|3FCH S% 024 | O1H 00H
n Not used| 1023| 1022 SS 2 1 o1 |-=2 % -1021 |-1022 | Not used
* Fraction

52 bits of b0 to b51 represent a value of XXXXXX... when the fraction is
expressed as 1. XXXXXX... in binary.

4-30

4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

(3) Precautions for when setting input values of single-precision real data/double-precision real
data from the programming tool

(a) Single-precision real
Single-precision real data are processed as 32-bit single precision in the programming
tool, and thus the number of significant figures becomes approximately 7. If the input
value of single-precision real data exceeds 7 digits, the 8th digit is rounded.
If the value after the rounding exceeds a value between -2147483648 and 2147483647,
an operation error occurs.

Example 1: When 2147483647 is set for the input value

f

8th digit '6' is rounded.
The value is handled as '2147484000".

Example 2: When 'E1.1754943562' is set for the input value

!

8th digit '3' is rounded.
The value is handled as 'E1.175494".

(b) Double-precision real
Double-precision real data are processed as 64-bit double precision in the programming
tool, and thus the number of significant figures becomes approximately 15. If the input
value of double-precision real data exceeds 15 digits, the 16th digit is rounded.
If the value after the rounding exceeds a value between -2147483648 and 2147483647,
an operation error occurs.

Example 1: When '2147483646.12345678' is set for the input value

?

16th digit '6' is rounded.
The value is handled as '2147483646.12346'.

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

Example 2: When 'E1.7976931348623157+307" is set for the input value

?

16th digit '5' is rounded.
The value is handled as 'E1.79769313486232+307'.

4.4 Method for Specifying Data 4-31
4.4.4 Single-precision real/double-precision real data

EIPOINT

1. Floating-point data in a CPU module can be monitored by the monitoring
function of the programming tool.
2. To express 0 in floating-point data, set all of the following bits to 0.
(a) Single-precision floating-point data: b0 to b31
(b) Double-precision floating-point data: b0 to b63

3. The setting range of real number is shown below:"!
(a) Single-precision floating-point data
~2128 < Device < —27126, 0, 27126 < Device < 2128
(b) Double-precision floating-point data
—21024 < Device < —271922 0, 271022 < pevice < 21024
4. Do not specify -0 (when only the highest bit of the floating-point real number is
1) for floating-point data. (A floating-point operation with -0 results an operation
error.)
For a CPU module that performs an internal operation of floating-point
operation with double precision, a floating-point operation does not result an
error since -0 is converted to 0 in a CPU module when -0 is specified.
For a CPU module that performs an internal operation of floating-point
operation with single precision, a floating-point operation results an error since
the process speed is given a priority and -0 is used for an operation as it is
when -0 is specified.
(a) The following is the CPU module in which the operation does not result
an error when -0 is specified.
+ High Performance model QCPU in which the internal operation is set

to double precision*2 (The default setting of internal floating-point
operation is double precision.)
(b) The following are the CPU modules in which the operation results an
error when -0 is specified.

- Basic model QCPU™3
 High Performance model QCPU in which the internal operation is set

to single precision*2

* Process CPU

* Redundant CPU

* Universal model QCPU
* LCPU

« FXCPU™

*1: For operations when an overflow or underflow is occurred, or when a special value is input, refer to the
following manuals.
* QCPU (Q mode)/LCPU
= User's Manuals (Function Explanation, Program Fundamentals) for the CPU module used.
* FXCPU
~ = User's manuals and Programming Manuals for the FXCPU used
*2: Switching between single precision and double precision of the internal floating-point operation is set in the
PLC system of the PLC parameter. For single precision and double precision of floating point operation, refer
to the User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.
*3: The floating point operation is supported with the Basic model QCPU with a serial number whose first five
digits are '04112' or higher.
*4: Only the FX2n, FXane, FX3s, FX3G, FX3ce, FX3u, and FX3uc support floating point operations.

4-32

4.4 Method for Specifying Data
4.4.4 Single-precision real/double-precision real data

4.4.5 String data

String data are character data used in basic instructions and application instructions.

From the specified character to the NULL code (00H) that indicates the end of the character
string are the target string data.

(1) When the specified character is NULL code

The NULL code is stored by using one word.

Mo $MOV
F———/EN ENO -

5 d — Var_DO0O

ool |

—— Transfers character string data
Specification of NULL code (00H)

(2) When the number of characters is an even number

Character string data and NULL code are stored by using the 'number of characters /2+1'
words.

For example, when 'ABCD' is transferred to word devices starting from DO, the character
string '"ABCD' is stored to DO and D1, and the NULL code to D2. (The NULL code is stored to
the last one word).

P4
[e]
MO $MOV E
F———yEN ENO |- s
"ABCD"—1s d [— Var_DO <3
: o
DO 42n i 414 5
T oo

D1| 44n 43H

D2 NULL

Transfers character string data

Specification of a character string
composed of even numbers

(3) When the number of characters is an odd number

Character string data and NULL code are stored by using the 'number of characters /2'
words (Rounding the fractional part).

For example, when '"ABCDE!' is transferred to word devices starting from DO, the character
string '"ABCDE' and the NULL code are stored to DO to D2. (The NULL code is stored to the
higher 8 bits of the last one word).

MO $MOV
F——oEN ENO |-
"ABCDE"— d — Var_DO

\—>DO 424 1+ 41n

D1| 44n | 43n
D2 NULL! 45n
Transfers character string data

(%]

|
|
1
|
|
|

Specification of a character string
composed of odd numbers

4.4 Method for Specifying Data 4-33
4.4.5 String data

4.4.6 Time data

Time data are used in time type operation instructions of application functions.
Specify time data in the T#10d20h30m40s567ms form.

For example. the following adds ‘1 Day, 2 Hours, 3 Minutes, and 4 Seconds’ to ‘10 Days, 20
Hours, 30 Minutes, 40 Seconds, and 567 Milliseconds’.

T#10d20h30m40s567ms g_time1
ADD_TIME
g_time1—_IN1 — g_time2
T#1d2h3m4s—_IN2

Each value of time data can be specified within the following range.

Table 4.4.6-1 Allowable specification range of time data

Value Range
d (Day) 0to 24
h (Hour) 0to 23
m (Minute) 0to 59
s (Second) 0to 59
ms (Millisecond) 0 to 999

For application functions, refer to the following manuals.
[MELSEC-Q/L Structured Programming Manual (Application Functions)

[Z= FXCPU Structured Programming Manual [Application Functions]

4-34 4.4 Method for Specifying Data
4.4.6 Time data

4.4.7 Arrays

An array represents a consecutive aggregation of same data type labels.
Arrays can be defined by the elementary data types or structures.
(=~ GX Works2 Version 1 Operating Manual (Structured Project))

The maximum number of arrays differs depending on the data types.

|One-dimensiona| array| |Two-dimensiona| array|
Label name Index Label name Index
boolary1 [0] boolary2 | [0,0] [0,1] te [0,n]
11 [1.0] | [1.1]
[n] MmOy | =+ | | [mn]

(1) Definition of arrays

The following table shows the format of definition. g
Table 4.4.7-1 Form used to define array = 'n<_:
< o]
Number of @O
O
array Format Remarks 5
. . oo
dimensions
o Array of elementary data type/structure name (array start value .. array end
ne
. . value)
dimension — .
(Definition example) Bit (0..2)
For elementary data types
Array of elementary data type/structure name (array start value .. array end .
Two ~_Z Section 4.3.5
. . value, array start value .. array end value)
dimensions — - For structured data types
(Definition example) Bit (0..2, 0..1) _
[Section 4.4.8
Th Array of elementary data type/structure name (array start value .. array end
ree
. . value, array start value .. array end value, array start value .. array end value)
dimensions
(Definition example) Bit (0..2, 0..1, 0..3)

(2) Expression of arrays

To identify individual labels of an array, append an index Example)
enclosed by '[]' after the label name.

Values that can be specified for indexes are within the range
from -32768 to 32767.

boolary1 [0] boolary2 [0.3]

. . . e . Label i
For an array with two or more dimensions, delimit indexes in -2°¢/name index

l[]l by l,l.

For the ST and structured ladder/FBD languages, labels (word (signed) or double word
(signed) data type) can be used for indexes as shown on the next page.

Note that Z0 or Z1 cannot be used in the programs if labels are used for indexes.

4.4 Method for Specifying Data 4-35
4.4.7 Arrays

[Structured ladder/FBD]

hCY ‘
Er EMO |~
—5 ,—-Index1 :
FOR
EM EMNO —
cd—n
M
EM EMNO — - -
d —ar_D0[Index1]-
I
Er EMNO — D
d ——index1 -
: MEXT :
EM EMNO —
[ST]
FOR Index1:=0
TO 4
BY 1 DO
INC(TRUE,Var_DO[Index1]);
END_FOR;
EIPOINT

1. When a label or a device is specified for an array index, the operation is
performed with a combination of multiple sequence instructions. Therefore, if
an interruption occurs during the operation of the array label, an unintended
operation result may be produced.
When using interrupt programs, use interrupt disable/enable instructions (DI/EI
instructions) as necessary.

2. If the index ! which is outside of the defined range is specified for an array

index, any of the following operations occur.

*An operation error occurs.

A current value of other label is referred or written.

*1: For example, a value other than the value within 0 to 2 is used for the index of an array which
is declared with the bit array (0..2).

(3) Maximum number of array elements
The maximum number of array elements differs depending on data types as shown below.

Table 4.4.7-2 Maximum number of array

Data type Maximum number
Bit, word (signed), word (unsigned)/16-bit string, timer, counter, and retentive timer 32768
Double word (signed), double word (unsigned)/32-bit string, single-precision real, and time 16384
Double-precision real 8192

String

32768 divided by string length

4-36 4.4 Method for Specifying Data
4.4.7 Arrays

4.4.8 structures

A structure is an aggregation of different data type labels.

Structures can be used in all POUs.

To use structures, first create the configuration of structure, and define a structure label name for
the created structure as a new data type

(=~ GX Works2 Version 1 Operating Manual (Structured Project))

To use each element of structure, append an element name after the structure label name with "'
as a delimiter in between.

Example) When using the element
of the structured data

dut_a1 . in00

]

Structure Element name
label name

Structures can also be used as arrays. When a structure is declared as an array, append an
index enclosed by '[]' after the structure label name. When arrays are used and accessed using
array indices to specify a label or device, the maximum value in an array is 32767.

The arranged structured data can be specified as arguments of functions and function blocks.

P4
o
2
25
¥ O
8%
o)
oo

When arrays are used and accessed using array indices to specify a label or device, a bit-
specified word device can not be specified for a bit type element.

Example) When using the element
of the arranged structured data

dut_b1 g LOO
Structure Index Element
label name name

Creating structures |

Structure name Element

samp_fb1 Bit bo00 | Define labels |

Bit bo01 Structure label name | Structure name

Word (signed) in00 I::> dut_a1 samp_fb1

Expression in a program

dut_a1.bo00 dut_a1.bo01
| |
[[

MOV
EN ENO [
dut_a1.in00 — s d — idata1

4.4 Method for Specifying Data 4-37
4.4.8 Structures

4.5 Device and Address

This section explains the method for expressing programmable controller CPU devices. The
following two types of format are available.

« Device: This format consists of a device name and a device number.
« Address: A format defined in IEC61131-3. In this format, a device name starts with %.

4.5.1 Device

Device is a format that uses a device name and a device number. Example)

X0 W35F

For details of devices, refer to the following manuals. \></

[Z¥ User's Manual (Function Explanation, Program Device name Device number
Fundamentals) for the CPU module used.

[=~ FXCPU Structured Programming Manual [Device & Common]

4-38 4.5 Device and Address
4.5.1 Device

4.5.2 Address
Address is a format defined in IEC61131-3.

The following table shows details of format that conforms to IEC61131-3.

Table 4.5.2-1 Address definition specifications

1st character: . 3rd character and later:
Start . 2nd character: data size . Number
position classification

| Input | (Omitted) Bit

Numeric characters used for
Number

Q Output X Bit detailed classification P
Use " (period) to delimit the corresponding to
% W Word (16 bits) the device
numbers from the subsequent)
M Internal D Double word (32 bits) numbers. number (decimal
) . notation)
L Long word (64 bits)q A period may be omitted.
*1: Not supported by FXCPU.
@ Position
Position is a major class indicating the position to Example)
which data are allocated in three types: input,
ypes:inp %1X0 %MX]1 . 863

output, and internal.

The following shows the format rules

corresponding to the device format. Position Data Classification Number
+ X, J\X (X device) : | (input) size

* Y, J\Y (Y device) : Q (output)

» Other devices : M (internal)

® Data size
Data size is a class indicating the size of data.
The following shows the format rules corresponding to the device format.

+ Bit device : X (bit)
» Word device : W (word), D (double word), L (long word)

@ Classification
Classification is a minor class indicating the type of a device that cannot be identified
only by its position and size.
Devices X and Y do not support classification.
For the format corresponding to the device format, refer to the following section.

[=" Section 4.5.3 Correspondence between devices and addresses

EIPOINT

Long words are used in double-precision real operation instructions of the
Universal model QCPU/LCPU.

4.5 Device and Address

4.5.2 Address 4-39

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

4.5.3 Correspondence between devices and addresses

This section explains the correspondence between devices and addresses.

(1) Correspondence between devices and addresses
The following table shows the correspondence between devices and addresses.

(a) QCPU (Q mode)/LCPU

Table 4.5.3-1 Correspondence between devices and addresses (1/2)

Expressing method

Example of correspondence between

Device device and address
Device Address Device Address
Input X Xn %IXn X7FF %1X2047
Output Y Yn %QXn Y7FF %QX2047
Internal relay M Mn %MX0.n M2047 %MX0.2047
Latch relay L Ln %MX8.n L2047 %MX8.2047
Annunciator F Fn %MX7.n F1023 %MX7.1023
Special relay SM SMn %MX10.n SM1023 %MX10.1023
Function input FX FXn None FX10 None
Function output FY FYn None FY10 None
Edge relay \% Vn %MX9.n V1023 %MX9.1023
Direct access input DX DXn %IX1.n DX7FF %I1X1.2047
Direct access output DY DYn %QX1.n DY7FF %QX1.2047
Contact TS Tn %MX3.n TS511 %MX3.511
o Coil TC Tn %MX5.n TC511 %MX5.511
E 0,
= %MW3.n TN511 %MW3.511
= Current value TN Tn ’ ?
%MD3.n T511 %MD3.511
Contact Cs Cn %MX4.n CS511 %MX4.511
£ Coil ccC Cn %MX86.n CC511 %MX6.511
3 %MW4.n CN511 %MW4.511
(&) Current value CN Cn
%MD4.n C511 %MD4.511
5 Contact STS STn %MX13.n STS511 %MX13.511
-g Coil STC STn %MX15.n STC511 %MX15.511
(]
>
b= %MW13.n STN511 %MW13.511
[} Current value STN STn
E %MD13.n ST511 %MD13.511
. %MWO0.n %MW0.11135
Data register D Dn D11135
%MDO0.n %MDO0.11135
)) %MW10.n %MW10.1023
Special register SD SDn SD1023
%MD10.n %MD10.1023
Function register FD FDn None FDO None
Link relay B Bn %MX1.n B7FF %MX1.2047
Link special relay SB SBn %MX11.n SB3FF %MX11.1023
. . %MW1.n %MW1.2047
Link register w Wn WT7FF
%MD1.n %MD1.2047
. . . %MW11.n %MW11.1023
Link special register SW SWn SW3FF
%MD11.n %MD11.1023
Intelligent function %MW14.x.n %MW 14.0.65535
) G Ux\Gn U0\G65535
module device %MD14.x.n %MD14.0.65535
) . %MW2.n %MW2.32767
File register R Rn R32767
%MD2.n %MD2.32767
Pointer P Pn " (Null character) | P299 None
Interrupt pointer | In None - -
Nesting N Nn None - -
. %MW?7.n %MW?7.9
Index register z Zn 29
%MD7.n %MD7.9

4-40

4.5 Device and Address

4.5.3 Correspondence between devices and addresses

Table 4.5.3-1

Correspondence between devices and addresses (2/2)

Expressing method

Example of correspondence between

Device device and address
Device Address Device Address
Step relay S Sn %MX2.n S127 %MX2.127
SFC transition device TR TRn %MX18.n TR3 %MX18.3
SFC block device BL BLn %MX17.n BL3 %MX17.3
Link input Jx\Xn %1X16.x.n JN\X1FFF %1X16.1.8191
Link output Jx\Yn %QX16.x.n JN\Y1FFF %QX16.1.8191
Link relay JX\Bn %MX16.x.1.n J2\B3FFF %MX16.2.1.16383
)) %MW16.x.1.n %MW16.2.1.16383
Link register J JX\Wn J2\W3FFF
%MD16.x.1.n %MD16.2.1.16383
Link special relay JX\SBn %MX16.x.11.n J2\SB1FF %MX16.2.11.511
%MW16.x.11.n
Link special register JX\SWn J2\SW1FF %MW16.2.11.511
%MD16.x.11.n
. ’ %MW12.n %MW12.32767
File register ZR ZRn ZR32767
%MD12.n %MD12.32767
(b) FXCPU
Table 4.5.3-2 Correspondence between devices and addresses
. Example of correspondence between
. Expressing method .
Device device and address
Device Address Device Address
Input X Xn %IXn X367 %IX247
Output Y Yn %QXn Y367 %QX247
Auxiliary relay M Mn %MX0.n M499 %MX0.499
Contact TS Tn %MX3.n TS191 %MX3.191
5] Coil TC Tn %MX5.n TC191 %MX5.191
E 0,
= %MW3.n TN191 %MW3.191
Current value TN Tn
%MD3.n T190 %MD3.190
Contact CS Cn %MX4.n CS99 %MX4.99
2 Coil ccC Cn %MX6.n CC99 %MX6.99
§ Current value N c %MW4.n CN99 %MW4.99
n
%MD4.n C98 %MD4.98
Data recister D b %MWO.n D199 %MWO0.199
n
9 %MDO.n D198 %MDO0.198
Intelligent function G UXG %MW14.x.n UO\GO9 %MW14.0.10
X\Gn
module device %MD14.x.n %MD14.0.9
Extension register R Rn %MW2.n R32767 %MW?2.32767
9 %MD2.n R32766 %MD2.32766
Extension file register ER ERn None - -
Pointer P Pn " (Null character) | P4095 None
Interrupt pointer | In None - -
Nesting N Nn None - -
2 z %MW?7.n z7 %MW?7.7
n
Index register %MD7.n Z6 %MD7.6
\Y Vn %MV6.n V7 %MW6.7
State S Sn %MX2.n S4095 %MX2.4095
4.5 Device and Address

4.5.3 Correspondence between devices and addresses

4-41

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

(2) Digit specification of bit devices

The following table shows the correspondence between devices and addresses when

specifying digits of bit devices.

Table 4.5.3-3 Correspondence of formats with digit specification

Device

Address

K[Number of digits][Device name][Device number]
(Number of digits: 1 to 8)

%[Position of memory area][Data size]19.[Number of
digits].[Classification].[Number]
(Number of digits: 1 to 8)

» Correspondence examples

Device Address
K1X0 %IW19.1.0
K4M100 %MW19.4.0.100
K8M100 %MD19.8.0.100
K2Y7EQ %QW19.2.2016

(3) Bit specification of word device

The following table shows the correspondence between devices and addresses when

specifying a bit device of word device.

Table 4.5.3-4 Correspondence of formats with bit specification

Device

Address

[Device name][Device number].[Bit number]
(Bit number: 0 to F)

%[Position of memory area]X[Classification].[Device
number].[Bit number]

» Correspondence examples

Device Address
D11135.C %MX0.11135.12
SD1023.F %MX10.1023.15
POINT

* Index setting, digit specification of bit devices, and bit specification of word

device

Index setting, digit specification of bit devices, and bit specification of word
device cannot be applied to labels.

4-42

4.5 Device and Address

4.5.3 Correspondence between devices and addresses

4.6 Index Setting

(1) Overview of the index setting

(a) The index setting is an indirect setting that uses index registers.
When the index setting is used in a sequence program, the device consists of ‘directly
specified device number’ + ‘content of index register’.
For example, when D272 is specified and the value of Z2 is 3, D(2+3)=D5 is set as the
target.

(b) For Universal model QCPU, LCPU, and FXCPU, indexes can be set in 32-bit range in
addition to 16-bit range.
(2) 16-bit index setting
(a) Setting an index in 16-bit range
Values from -32768 to 32767 can be set to index registers”.
The following shows how the index is set.

X0 MOV
| | EN ENOf— Stores-1atZ0.
1—s dF—Z0
|XO| ENMOI;/NO - Stores the data of D10Z0=
[D{10+(-1)} = D9 to DO.
D10Z0—s d— Do

\—v Index setting

*1 For the index setting, refer to the user's manual (function explanation, program
fundamentals) for the CPU module used.
(b) Devices that can be used for the index setting (for QCPU (Q mode), LCPU)

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

The index setting can be applied to devices used by contacts, coils, basic instructions,
and application instructions except for the restrictions listed in the tables below. The
index setting cannot be applied to labels.

1) Devices that cannot be used for the index setting

Device Description
E Floating-point data
Character string data
L3835 (D0.1 etc.) Bit-specified word device
FX, FY, FD Function devices
P Pointers used as labels

| Interrupt pointers used as labels

z Index registers

Step relays™

TR SFC transition devices 2

BL SFC block devices™

*2: SFC transition devices and SFC block devices are devices
for SFC programs. For details, refer to the following manual.
* MELSEC-Q/L/QnA Programming Manual (SFC)
*3: The SFC block devices (BL) and step relays (S) of a High-speed Universal model QCPU can be used for
the index setting under the following ranges.
» SFC block device (BL): BLO to BL319
« Step relay (S): Within the range set in the parameter
When the step relays (S) in an SFC block device are selected, SO to S511 can be used for the index
setting.

4.6 Index Setting 4-43

2) Devices with restrictions on index registers

Device Description Example
TS0Z0 OUT T
T Only Z0 or Z1 can be used for contacts or I/ I EN ENO
coils of the timer. TC1Z1 — 81
100—{s2
CSs0z1 OuT C
c Only Z0 or Z1 can be used for contacts or I I EN ENONF
coils of the counter. CC120—s1
100 —s2

(c) Devices that can be used for the index setting (for FXCPU)

The following table shows the devices that can be used for the index setting.

Device Description
M, S, T,C,D, R,
Decimal devices, values
KnM, KnS, P, K
X, Y, KnX, KnY Octal devices
H Hexadecimal values

1) Devices with restrictions on index registers
When using FXCPU, note the following precautions.

* The index setting for devices used in the basic instructions is available for
FX3u and FX3uc only.

» The index setting cannot be applied to 32-bit counter and special auxiliary
relay.

There are no usage restrictions on index register numbers for current values of
the timer and counter.

X0 OUT. T
| | EN ENO[
TCO—s1
100—{s2
[» Set value of timer
(Index setting is not applicable)
SM400 BCD
| | EN ENOR
TNOZ4—s d —K4Y30
[» Current value of timer
X1 OouT_C
[| EN ENO
CC100—s1
10—s2
‘ » Set value of counter
(Index setting is not applicable)
SM400 BCD
| | EN ENOR
CN100Z6 —s d —K2Y40
‘ » Current value of counter

4-44 4.6 Index Setting

(d) The following figure shows the examples of index setting and their actual processing

devices.

(With the setting of Z0=20 and Z1=-5)

Ladder example Actual processing device
X0 MOV X1 MOV
— | EN ENOI~ EN ENO -
K201 =20 K2x64—s d |—K1M33
MOV Description
K-5— SEN EN% — 21 K2X50Z0 ------ K2X(50 + 14) = K2X64
¥
X ENMOI\E/NO L Converts K20 to a hexadecimal number.
K2X50Z0 —1s d —K1Mm3821 K1M38Z1 ------ K1M(38 - 5) = K1IM33
X0 MOV X1 MOV
|| EN ENO|-
b Tkeo—s df—z0 F———EN ENO|-
D20—s d — K3Y12A
MOV -
EN ENO N Description
K-5—s dr—2z1 DO0ZO e D (0 + 20) =D20
X1 MOV K3Y12Fz1 ------ K3Y(12F - 5) = K3Y12A
|} EN ENO|- : WL,
D0z0 18 d K3Y12FZ1 Hexadecimal number

Figure. 4.6-1 Ladder examples and actual processing devices

(3) 32-bit index setting (for Universal model QCPU (excluding Q00UJCPU), LCPU, and
FXCPU)
For Universal model QCPU (excluding QO0UJCPU) and LCPU, either of the following two
methods can be selected to specify index registers used for a 32-bit index setting.

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

» Specify a range of index registers used for a 32-bit index setting.

» Specify a 32-bit index setting using 'ZZ'.
For FXCPU, combine index registers V (from VO0) and Z (from Z0) for a 32-bit index setting.

EIPOINT

32-bit index settings using 'ZZ' can be used for the following CPU modules only.
* QnU(D)(H)CPU with a serial number whose first five digits are '10042' or higher
(excluding QO0UJCPU)
* QnUDE(H)CPU
* QnUDVCPU
*LCPU

4.6 Index Setting 4-45

(a) Specifying a range of index registers used for a 32-bit index setting

1) Values from —2147483648 to 2147483647 can be set to index registers.
The following shows how the index is set.

X0 DMOV
I I EN ENO Stores 40000 to Z0
40000—1s d—Var_z0
X0
[} ENMOE/NO | Stores the data of
ZR10Z0—s d—po ZR {10+40000} = ZR40010 to DO

Index setting

2) Specification method

When setting indexes in 32-bit range, specify the start number of index
registers to be used in “Indexing Setting for ZR Device” setting in the
<<Device>> tab of the PLC parameter.

Indexing Setking For ZR Device
3ZBik Indexing

(v lse 7 z | After (0 -- 18)

" Use Z7

Figure 4.6-2 Index setting for ZR device on the parameter setting screen

EIPOINT

When changing the start number of index registers to be used in the device
setting of the PLC parameter, do not change nor write only parameters to the
programmable controller. Always write parameters along with the program to the
programmable controller.

If data are forcibly written, the operation error "CAN'T EXE. PRG." (error code:
2500) occurs.

3) Devices that can be used for index settings
Only the following devices can be used for index settings.

Device Description
ZR Serial number access file register
D Extended data register
w Extended link register
M3 Internal relay
B3 Link relay
D" Data register
w3 Link register
Un\B"™ Link relay
Un\w'™3 Link register

*3: The devices can be used for High-speed Universal model QCPU only.

4-46 4.6 Index Setting

4) Usage range of index registers
The following table lists the usage range of index registers when setting
indexes in 32-bit range.
Since the specified index register (Zn) and next index register (Zn+1) are used
for index setting in 32-bit range, make sure not to overlap index registers being

used.

Setting value Index register Setting value Index register
Z0 20, 21 Z10 210, Z11
Z1 Z1,722 1 Z11, 212
z2 72,73 Z12 212,713
Z3 73,74 Z13 213,214
Z4 74,75 Z14 Z14, 715
Z5 Z5, 76 Z15 215,716
Z6 26,27 216 216, Z17
z7 77,78 217 Z17, 2718
Z8 Z8, 79 Z18 218, 219
Z9 Z9, Z10 Z19 Not applicable

5) The following figure shows the examples of index setting and their actual
processing devices.

(With the setting of Z0 (32 bits) =100000 and Z2 (32 bits)=-20)

A - P4
Ladder example Actual processing device o
g
X1 MOV 25
X0 DMOV O
I ENENO EN ENO — 5
[B — — oz
K100000— < 4l—z0 ZR101000 s d D12980 K
o O
DMOV Description
EN ENO ZR1000Z0 - - - ZR(1000+100000)=ZR101000
K-20— s dF—2z2 D13000Z2 - - - D(30-20)=D12980
X1 MOV
[| EN ENO
ZR1000Z20— s d — D13000Z2

Figure 4.6-3 Ladder examples and actual processing devices

4.6 Index Setting 4-47

(b) Specifying a 32-bit index setting using 'ZZ'

1) A 32-bit index can be specified to the index register by specifying an index
using 'ZZ', for instance, 'ZR0ZZ4'.

The following figure shows the 32-bit index setting using 'ZZ'.

MO DMOVP
[} EN ENO|— Set 100000 to Z4 and Z5.
K100000— s dr—2z4
|M? MovP Set 32-bit (Z4, Z5) index to ZR.
T EN ENO— ZR(0+100000) indicates ZR100000.
K100—s d — ZR0ZZ4

2) Specification method
When specifying a 32-bit index setting using 'ZZ', select "Use ZZ" in the
"Indexing Setting for ZR Device" setting in the <<Device>> tab of the PLC
parameter.

Indexing Setting for ZR Device
32ZBit Indexing

Figure 4.6-4 Index setting for ZR device on the parameter setting screen

3) Devices that can be used for the index setting
Only the following devices can be used for the index setting.

Device Description
ZR Serial number access file register
D Extended data register
w Extended link register

4) Usage range of index registers
The following table shows the usage range of index registers when specifying
32-bit index setting using 'ZZ'.
When specifying a 32-bit index setting using 'ZZ', specify a device as a form of

ZRmZZn.

The device number of ZRm is indexed with 32 bits (Zn, Zn+1) by specifying

ZRmZZn.
Z7+2 Index register 774 Index register
1270 20, 21 112710 210, 211
£3zz21 z21,22 ©3Z2Z11 Z11, 212
3772 72,73 1327212 212,213
1773 Z3,74 ©17z213 Z13,214
1zz4 Z4,75 172214 Z14,215
1775 Z5,76 1z2z215 Z15,216
1776 z6, Z7 17716 z16, 217
y44 27,28 LiZz17 17,218
1778 Z8,29 12718 Z18, 219
11229 29,210 77172719 Not applicable
*4: [} Indicates the device name (ZR, D, W) to be indexed

4-48

4.6 Index Setting

5) The following figure shows the examples of 32-bit index setting using 'ZZ' and
their actual processing devices.

(With the setting of Z0 (32 bits) =100000 and Z2 (32 bits)=-20)

Ladder example Actual processing device
X1 MOV
X0 DMOV
|7 EN ENO —
I I EN ENO ™ ZR101000—s d — D12980
K100000— s dF—20
DMOV Description
EN ENO — ZR1000Z0 - - - ZR(1000+100000)=ZR101000

K-20— s dr—22 D13000Z2 - - - D(30-20)=D12980
X1 MOV
| | EN ENO

ZR1000ZZ0—{ s d — D13000Z2

Figure 4.6-5 Ladder examples and actual processing devices
6) Functions that can use 'ZZ'

32-bit index settings using 'ZZ' can be used in the following functions.

No. Description

1 Device specification with an instruction in a program

2 Monitoring device registrations

3 Device test %

4 Device test with an execution condition o

5 Setting monitoring conditions % %

6 Sampling trace (trace point (device specification), trace target é’ "%"
devices) oo

7 Data logging function (sampling interval (device specification),

logging target data)

EIPOINT

ZZn cannot be used individually such as 'DMOV K100000 ZZ0'. When setting a
value to index registers to specify a 32-bit index setting using 'ZZ', set a value to
Zn (Z0 to Z19).

ZZn cannot be entered individually in the functions.

(c) 32-bit index setting for FXCPU
Combine index registers V (from V0) and Z (from Z0) for a 32-bit index setting.
V is used for high order and Z is used for low order. With the combination of the
specified Z and the corresponding V, the device can be used as a 32-bit register.
Note that the index setting is not applied by specifying the high order V.
Example: When specifying Z4, V4 and Z4 are used as a 32-bit register.

Setting value Index register
Z0 VO, Z0
Z1 V1, Z1
z2 V2,22
Z3 V3, Z3
Z4 V4, 74
Z5 V5, 75
Z6 V6, Z6
z7 V7,277

4.6 Index Setting 4-49

(4) Applying index settings to extended data registers (D) and extended link registers (W)

(for Universal model QCPU (excluding Q00UJCPU), and LCPU)

As an index setting can be applied to internal user devices, data registers (D) and link
registers (W), the device specification by the index setting can be used within the range of
extended data registers (D) and extended link registers (W).

D device image

The index setting applied to
the internal user device

User program
Z0=0
—»D100
|| MoY Internal user
b ENENO device
1234—1s d —D100Z0 __|—>
D1100
Z0 = 1000
a0 D20000
[| ENMOI\E/NO - _f | Extended data
L register
1234—1s d = D20000Z1 —L
\ D22000
Z1=2000

The index setting applied to
the extended data register

1) Index settings that cross internal user devices and extended data registers (D)/
extended link registers (W)
An index setting that crosses internal user devices and extended data registers
(D)/extended link registers (W) cannot be applied. If the device range check is
enabled at the index setting, an error occurs. (Error code: 4101)

D device image

The index setting applied to
the internal user device

User program

2020, hi00

MOV > Internal user device

| | EN ENO|-
D20100

1234—18 d — D100Z0
—
Z0=20000 > Extended data register

4

The index setting that crosses
internal user device and extended

data register cannot be applied.

4-50

4.6 Index Setting

2) Index settings that cross file registers (ZR), extended data registers (D), and
extended link registers (W)
Even when an index setting that crosses file registers (ZR), extended data
registers (D), and extended link registers (W) is applied, an error does not

Ooccur.

However, if the result of the index setting applied to file registers (ZR),
extended data registers (D) or extended link registers (W) exceeds the range
of the file register files, an error occurs. (Error code: 4101)

User program

Even when the index setting
that crosses file register and
extended data registers (D) is

applied, an error does not occur.

File register file

MOV
| | EN ENO -
1234—]s d —D10020
MOV
| | EN ENO|[-
1234—]s d — D20000Z1

|ZO=1000O
D14196

70-0 ZR100

Z1=0 D20000

Z1=4000

—| —— w2DCo0

A7

Even when the index setting that

crosses extended data register (D)
and extended link register (W) is
applied, an error does not occur.

If the result of the index setting
exceeds the range of the file

register files, an error occurs. — | .Z1=10000 X

(5) Other applicable data

(a) Bitdata

File
register
(8K points)

Extended data
register (D)
(8K points)
From D12288

Extended link
register (W)
(8K points)
From W2000

An index setting is applicable to device numbers whose digits are specified.
Note that an index setting is not applicable to the digit-specified bit device.

» Index setting is applicable

BIN
| | EN ENOM
Kax0z2—s d—po
BIN
| | EN ENO[-
K4z3x0—1s d—Do

to the device number,
If Z2=3, then (X0+3)=X3

> Index setting is not applicable
to the digit-specified bit device.

4.6 Index Setting

4-51

P4
o]
2
o
2
Q
[T
P4
o]
(@]

PROGRAM

(b) Anindex setting is applicable to both start I/O numbers of the intelligent function module
and buffer memory addresses for intelligent function module devices ®

MOV
EN ENO—
U1OZ1\GO‘ZZ— S d—DO0

» If Z1=2 and Z2=8,
then U(10+2)\G(0+8)=U12\G8

(c) An index setting is applicable to both network numbers and device numbers for link

direct devices .

MOV
EN ENO[—
J1Z1\K4X922— S d—Do0

» If Z1=2 and Z2=8,
then J(1+2)\K4X(0+8)=J3\K4X8

(d) An index setting is applicable to both start I/O numbers of the CPU module and CPU
shared memory addresses for multiple CPU area devices®.

MOV
EN ENO [~
U3EOZ1\G0Z2—.8 d—DO0

*5: For intelligent function module devices and link direct devices, refer to the User's Manual (Function
Explanation, Program Fundamentals) of the CPU module used.

*6: For multiple CPU area devices, refer to the User's Manual (Function Explanation, Program Fundamentals) of
the CPU module used.

(e) A 32-bit index setting is applicable to extended data register (D) and extended link
register (W)
(for Universal model QCPU (excluding Q00UJCPU), and LCPU)
When applying an index setting to extended data registers (D) or extended link registers
(W), it can be applied in 32-bit range as applying an index setting to file registers (ZR) in
the following two methods.

» Specify a range of index registers used for a 32-bit index setting.

+ Specify a 32-bit index setting using 'ZZ'.

EIPOINT

32-bit index settings using 'ZZ' can be used for the following CPU modules only.
* QnU(D)(H)CPU with a serial number whose first five digits are '10042' or higher
(excluding QO0UJCPU)
* QnUDE(H)CPU
*+QnUDVCPU
*LCPU

4-52

4.6 Index Setting

(6) Precautions

(a) Using the index setting for arguments of instruction/application function/function/
function block
When "Use ZZ" is checked in "Indexing Setting for ZR Device" setting in the
<<Device>> tab of the PLC parameter, and Z device is used for the argument of
instruction/application function/function/function block, the expression is converted to
"ZZ" at the compilation. This may cause unintended device accesses.
When "Use ZZ" is checked, use ZZ devices for arguments of instruction/application
function/function/function block.

(b) Applying the index setting within the FOR to NEXT instruction loop
The pulses can be output by using edge relays (V) within the FOR to NEXT instruction
loop.
Note that the pulses cannot be output by the PLS, PLF, or pulse (:; P) instruction.

[When using an edge relay] [When not using an edge relay]
(M0Z1 pulse is output normally.) (M0Z1 pulse is not output normally.)
SM400 MOV SM400 MOV
[| EN ENO|- [| EN ENO|-
0 —s di—271 0—s dr—21

FOR FOR
EN ENO EN ENO[=z
10— n 10— n o
5
s
< o]
X0Z1 EGP ouT X0Z1 PLS 2O
[| EN ENO EN ENO|- [| EN ENO|- QL
d —Vv0z1 d — M0z1 d — M0z1 x O
oo

SM400 INC SM400 INC

[| EN ENO [| EN ENO[-
df—2z1 df—2z1
NEXT NEXT
EN ENO EN ENO

The ON/OFF information of X0Z1 is stored to the edge relay V0Z1.
For example, the ON/OFF data of X0 is stored to VO and the ON/OFF data of X1
is stored to V1.

EIPOINT

Z0 and Z1 cannot be used when labels are used for array indexes within the FOR
to NEXT instruction loop.

4.6 Index Setting 4-53

(c) Applying the index setting in the CALL instruction
The pulse can be output by using edge relays (V) with the CALL instruction. Note that
the pulse cannot be output by the PLS, PLF, or pulse (i P) instruction.

[When using an edge relay]

(M0Z1 pulse is output normally.)

MOV

EN ENO-

1—s dr—2z1

CALL

EN ENO-

MoV

EN ENO[~

CALL

EN ENO—

FEND
EN ENO

EGP
EN ENO

o

—V0z1

ouT
EN ENO|—
d -M0z1

RET
EN ENO

[When not using an edge relay]

(M0OZ1 pulse is not output normally.)

SM400
| |

MOV
EN ENO
s d

— Z1

PO—|

CALL
EN ENO

MoV
EN ENO

— Z1

PO—

CALL
EN ENO

FEND
EN ENO

X0z1
| |

PLS
EN ENO

o

—MO0z1

(d) Device range check when the index setting is applied

1) For Basic model QCPU, High Performance model QCPU, Process CPU,

2)

Redundant CPU, and FXCPU

RET
EN ENO

The device range is not checked when the index setting is applied.

For Basic model QCPU, High Performance model QCPU, Process CPU, and
Redundant CPU, if the result of the index setting exceeds the device range
specified by a user, an error does not occur and the data are written to other
devices. (Note that if the result of the index setting exceeds the device range
specified by a user and the data are written to devices for the system, an error
occurs. (Error code: 1103))
For FXCPU, an operation error occurs. (Error code: 6706)
Create a program with caution when applying the index setting.

For Universal model QCPU, and LCPU

The device range is checked when the index setting is applied.
By changing the settings of the PLC parameter, the device range is not

checked.

(e) Switching between 16-bit and 32-bit range of the index setting
When switching between 16-bit and 32-bit range, check the positions of the index
setting in the program.
Since the specified index register (Zn) and next index register (Zn+1) are used for index
setting in 32-bit range, make sure not to overlap index registers being used.

4-54

4.6 Index Setting

4.7 Libraries

A library is an aggregation of data including POUs, global labels, and structures organized in a
single file to be utilized in multiple projects.

The following are the advantages of using libraries.

» Data in library files can be utilized in multiple projects by installing them to each project.

» Since library data can be created according to the functions of components, data to be reused
can be easily confirmed.

* If components registered in a library are modified, the modification is applied to projects that
use the modified data.

The following figure shows the data flow when using library components in a project.

| Library file | Project |
- I
~| Library
——| Program | ——| Program |
9 Install g | Edit | 3
g
—| Global label | —| Global label | <§,: =}
O
3%
25
—| Function block | —| Function block | o O
—| Function | —| Function |
—| Structure | P> —| Structure |
w
- | Global label |)
Installed library can be
- registered in the task
— | Program file | of the project.
SN
POUs can be called | POU
from the programs
in the project.
— | Program |
— | Function |

— | Function block |

— | Structure |

4.7 Libraries

4-55

4.7.1 User libraries

A user library is a library for storing created structures, global labels, POUs, and other data that
can be used in other projects.

(1) Composition of a user library
The following table shows data that can be registered in a user library.

Table 4.7.1-1 Composition of a user library

Name Description
Structure Stores definitions of structures used in POU folders of library or definitions of
structures used in programs of a project.
Global label Stores definitions of global labels used in POU folders of library.
POU Stores programs, functions, and function blocks that can be used as libraries.
4-56 4.7 Libraries

4.7.1 User libraries

4.8 Precautions on Assigning a Name

This section explains the conditions for assigning a name to a label, function block instance, or
structure label.

¢ Conditions

(1)

()

)

()

(6)

(8)

Specify a name within 32 characters.

Do not use reserved words.
For reserved words, refer to the following section.

[—= Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

Use alphanumeric and underscores ().

Do not use an underscore at the end of the name.
Do not use two or more underscores in succession.

Do not use spaces.

Do not use a number for the initial character.

Constants cannot be used.

(An identifier that begins with 'H' or 'h' and an expression where a hexadecimal (0 to F)
immediately follows 'H' or 'h' (maximum 9 digits including 'H' or 'h' (excluding 0 that
immediately follows 'H' or 'h')) are also treated as a constant. (Example: 'habQ"))

Elementary data type names cannot be used.

Function/FB names cannot be used.

4.8 Precautions on Assigning a Name

4-57

PROGRAM

P4
o]
2
o
2
Q
[T
P4
o]
(@]

MEMO

4-58

MIINGINO SAYYO0dd JONINDIS SWYHO0dd ONILYIHD NOILVYHNOIINOD SWV¥O0Ud S30I1ANIddY X3ANI
40 NOIS3a a3dNLONYLS ¥04 F¥NA3I00Ud NVHO0dd ONILRIM

5-2
. 5-13

WRITING PROGRAMS

5.2 Structured Ladder/FBD.

5.1

5-1

5.1 ST

The ST language is a text language with a similar grammatical structure to the C language.

Controls such as conditional judgement and repetition process written in syntax can be
described.

This language is suitable for programming complicated processes that cannot be easily
described by a graphic language (structured ladder/FBD language).

5.1.1 standard format

N2 = ABS{INTVT]; < I Assignment syntax |
I[F M1 THEN
btn01 =TRUE; —‘
ELSE J
bth01 :=FALSE: < syntaxes
END_IF; J
Cutput_ENO =ENEG(bIn0T, Inputl);, < Calling the function

LadderFEInstance(inputl:= booll Input2:= bool2, Input3:=boal3); 4—{ Calling the function block |

(* user fuction block =)
Comment

Operators and syntax are used for programming in the ST language.

|rh|-l-""‘f'llul :: _Ener"'a he end.
inwz:gﬁ et

Spaces, tabs, and line feeds can be inserted anywhere between a keyword and an identifier.

; oo |

Inth'1 :=$Cl;

inthy2:= | T |
:

Comments can be inserted in a program. Describe '(*' in front of a comment and ™)' in back of a

Syntax must end with ";'".

comment.
Irts/ T =0
| I[*SUbSTiTUﬂDﬁ*]I I{i Comment
It =2

Entering a comment in a comment causes the following compile error.

Compile error content: "Parser error" Error code : C1200
[*Flag_A = TRUE Control start*) Flag_4 = FALSE Stop control ®)

[*START (* Stop processing *) Restat End ¥

5.1ST
5.1.1 Standard format

5.1.2 Operators in ST language

The following table shows the operators used in the ST program and their priorities.

Table 5.1.2-1 Operators in the ST language

Operator Description Example Priority
() Parenthesized expression (1+2)*(3+4) Highest
Function () Function (Parameter list) ADD_E(bo01, in01, in02, in03) 4
** Exponentiation re01:=2.0** 4.4
NOT Logical negation NOT bo01
* Multiplication 3*4
/ Division 12/3
MOD Modulus operation 13 MOD 3
+ Addition in01 +in02
- Subtraction in01 - in02
<, >, <=, => Comparison in01 <in02
= Equality in01 =in02
<> Inequality in01 <>in02
AND, & Logical AND bo01 & bo02
XOR Exclusive OR bo01 XOR bo02
OR Logical OR bo01 OR bo02 Lowest

If a syntax includes multiple operators with a same priority, the operation is performed from the

leftmost operator.

The following table shows the operators, applicable data types, and operation result data types.

Table 5.1.2-2 Data types used in operators

Operator Applicable data type Operation result data type
A+, - ANY_NUM ANY_NUM
<, > <=, >=, = <> ANY_SIMPLE Bit
MOD ANY_INT ANY_INT
AND, &, XOR, OR, NOT ANY_BIT ANY_BIT
ANY_REAL (Base)
* ANY_REAL

ANY_NUM (Exponent)

5.18T

5.1.2 Operators in ST language

()
=
<
o
O]
@]
o
o

WRITING

5.71.3 Syntax in ST language

The following table shows the syntax that can be used in the ST program.
Table 5.1.3-1 Syntax in the ST language

Type of syntax Description

Assignment syntax Assignment syntax

» IF THEN conditional syntax, IF ELSE conditional syntax, and IF ELSIF conditional syntax
Conditional syntax

CASE conditional syntax

FOR DO syntax

Iteration syntax WHILE DO syntax

REPEAT UNTIL syntax

RETURN syntax
Other control syntax

EXIT syntax

(1) Assignment syntax

(a) Format
<Left side> := <Right side>;

(b) Description
The assignment syntax assigns the result of the right side expression to the label or
device of the left side.
The result of the right side expression and data type of the left side need to obtain the
same data when using the assignment syntax.

(c) Example

ity =0
intvz =2
EIPOINT

Array type labels and structure labels can be used for the assignment syntax.
Note the data types of left side and right side.
« Array type labels
The data type and the number of elements need to be the same for left side and
right side.
When using array type labels, do not specify elements.
< Example >
intAry1 := intAry2;

« Structure labels
The data type (structured data type) needs to be the same for left side and right
side.
< Example >
dutVar1 := dutVar2;

5-4 5.18T
5.1.3 Syntax in ST language

(2) IF THEN conditional syntax

(a) Format
IF <Boolean expression> THEN
<Syntax ...>;
END_IF;

(b) Description
The syntax is executed when the value of Boolean expression (conditional expression)
is TRUE. The syntax is not executed if the value of Boolean expression is FALSE.
Any expression that returns TRUE or FALSE as the result of the Boolean operation with
a single bit type variable status, or a complicated expression that includes many
variables can be used for the Boolean expression.

(c) Example

IF booll THEN
inty1:=inty] +1:
END_IF:

(3) IF ...ELSE conditional syntax

(a) Format

IF <Boolean expression> THEN
<Syntax 1 ...>;

ELSE

<Syntax 2 ...>;

END_IF;

(b) Description
Syntax 1 is executed when the value of Boolean expression (conditional expression) is
TRUE.
Syntax 2 is executed when the value of Boolean expression is FALSE.

()
=
<
o
O]
@]
o
o

WRITING

(c) Example

IF booll THEN
i3 =inty'3 +1;
ELSE
intyvd =inty/4 +1;
END_IF:

5.18T
5.1.3 Syntax in ST language

(4) IF ...ELSIF conditional syntax

(a) Format
IF <Boolean expression 1> THEN
<Syntax 1 ...>;
ELSIF <Boolean expression 2> THEN
<Syntax 2 ...>;
ELSIF <Boolean expression 3> THEN
<Syntax 3 ...>;
END_IF;

(b) Description
Syntax 1 is executed when the value of Boolean expression (conditional expression) 1
is TRUE. Syntax 2 is executed when the value of Boolean expression 1 is FALSE and
the value of Boolean expression 2 is TRUE.
Syntax 3 is executed when the value of Boolean expression 1 and 2 are FALSE and the
value of Boolean expression 3 is TRUE.

(c) Example

IF booll THEN
it : = intl +1:
ELSIF bool2 THEN
nt2 « = int2 +2;
ELSIF bool3 THEN
i3 : = intyv'3 +3;
END_IF:

(5) CASE conditional syntax

(a) Format
CASE <Integer expression> OF
<Integer selection 1> : <Syntax 1 ...>;
<Integer selection 2> : <Syntax 2 ...>;

<Integer selection n>: <Syntax n ...>;
ELSE

<Syntax n+1 ...>;

END_CASE;

(b) Description
The result of the CASE conditional expression is returned as an integer value. The
CASE conditional syntax is used to execute a selection syntax by a single integer value
or an integer value as the result of a complicated expression.
When the syntax that has the integer selection value that matches with the value of
integer expression is executed, and if no integer selection value is matched with the
expression value, the syntax that follows the ELSE syntax is executed.

(c) Example
CASE inty'1T OF
1:booll :=TRUE;
Z:boolz =TRUE;
ELSE
inty1 :=intv'1 +1;
END_CASE;

5.18T
5.1.3 Syntax in ST language

(6) FOR...DO syntax

(a) Format

FOR <Repeat variable initialization>
TO <Last value>

BY <Incremental expression> DO
<Syntax ...>;

END_FOR,;

(b) Description
The FOR...DO syntax repeats the execution of several syntax according to the value of
a repeat variable.

(c) Example

FOR inty1 := 0

TO 30

BY 1 DO

i3 =inty +1;
END_FOR;

(7) WHILE...DO syntax

(a) Format

WHILE <Boolean expression> DO
<Syntax ...>;
END_WHILE;

(b) Description
The WHILE...DO syntax executes one or more syntax while the value of Boolean
expression (conditional expression) is TRUE.
The Boolean expression is evaluated before the execution of the syntax. If the value of
Boolean expression is FALSE, the syntax in the WHILE...DO syntax is not executed.
Since a return result of the Boolean expression in the WHILE syntax requires only
TRUE or FALSE, any Boolean expression that can be specified in the IF conditional
syntax can be used.

()
=
<
o
O]
@]
o
o

WRITING

(c) Example
WHILE infv'1 = 30 DO
inty'1 =intv1 +1;
END WHILE;

5.18T
5.1.3 Syntax in ST language

(8) REPEAT...UNTIL syntax

(@)

(b)

(c)

Format

REPEAT

<Syntax ...>;

UNTIL <Boolean expression>
END_REPEAT,

Description

The REPEAT...UNTIL syntax executes one or more syntax while the value of Boolean
expression (conditional expression) is FALSE.

The Boolean expression is evaluated after the execution of the syntax. If the value of
Boolean expression is TRUE, the syntax in the REPEAT...UNTIL syntax are not
executed.

Since a return result of the Boolean expression in the REPEAT syntax requires only
TRUE or FALSE, any Boolean expression that can be specified in the IF conditional
syntax can be used.

Example

REPEAT
Nty 1 :=inty1 +1;
UNTIL ints/1 = 30
END_REPEAT,

(9) RETURN syntax

(a) Format

RETURN;

(b) Description

The RETURN syntax is used to end a program in a middle of the process.

When the RETURN syntax is used in a program, the process jumps from the RETURN
syntax execution step to the last line of the program, ignoring all the remaining steps
after the RETURN syntax.

(c) Example

IF booll THEN
RETURN:
END_IF:

5-8

5.1S8T

5.1.3 Syntax in ST language

(10) EXIT syntax

(a) Format
EXIT;

(b) Description
The EXIT syntax is used only in iteration syntax to end the iteration syntax in a middle of
the process.
When the EXIT syntax is reached during the execution of the iteration loop, the iteration
loop process after the EXIT syntax is not executed. The process continues from the line
after the one where the iteration syntax is ended.

(c) Example

FOR inty1 := 0
TO10
BY 1 DO
IFintv1 > 10 THEN
EXIT:
END_IF:
END_FOR:

5.1.4 calling functions in ST language

The following description is used to call a function in the ST language.

‘ Function name (Variable1, Variable2, ...); ‘

Enclose the arguments by '()" after the function name.

When using multiple variables, delimit them by ','".

()
=
<
o
O]
@]
o
o

WRITING

The execution result of the function is stored by assigning the result to the variables.

1) Calling a function with one input variable (Example: ABS)

Output1 := ABS(Input1);

2) Calling a function with three input variables (Example: MAX)

Output1 := MAX(Input1, Input2, Input3);

3) Calling a function with EN/ENO (Example: MOV)
boolENO := MOV(boolEN, Input1, Output1);

For a function with EN/ENO, the result of the function execution is ENO, and
the first argument (Variable 1) is EN.

5.18T

5.1.4 Calling functions in ST language 59

5.1.5 calling function blocks in ST language

The following description is used to call a function block in the ST language.

‘ Instance name(Input variable1:= Variable1, ... Output variable1: = Variable2, ...);

Enclose the assignment syntax that assigns variables to the input variable and output variable by
'(') after the instance name.

When using multiple variables, delimit assignment syntax by ',' (comma).

The execution result of the function block is stored by assigning the output variable that is
specified by adding "." (period) after the instance name to the variable.

1) Calling a function block with one input variable and one output variable

FB definition
FB Name: FBADD
FB instance name: FBADD1
Input variable1: IN1
Output variable1: OUT1

The following is the description to call the function block above.
FBADD1(IN1:=Input1);
Output1:=FBADD1.0UT1,

2) Calling a function block with three input variables and two output variables

FB definition
FB Name: FBADD
FB instance name: FBADD1
Input variable1: IN1
Input variable2: IN2
Input variable3: IN3
Output variable1: OUT1
Output variable2: OUT2

The following is the description to call the function block above.
FBADD1(IN1:=Input1, IN2:=Input2, IN3:= Input3);
Output1:=FBADD1.0UT1;

Output2:=FBADD1.0UT2;

EIPOINT

Arguments using at function block call;

VAR_OUTPUT is not appeared on a template if a checkbox in the following option
window is not selected;

[Tools] — [Options] — "Convert"— "Structured Ladder/FBD/ST" "Compile
Condition1"— "Allow VAR_OUTPUT at FB call (ST)".

5-10

5.1S8ST
5.1.5 Calling function blocks in ST language

5.1.6 Precautions when using conditional syntax and iteration syntax

The following explains the precautions when creating ST programs using conditional syntax and
iteration syntax.

(1) Once the conditions (boolean expression) are met in the conditional syntax or iteration
syntax, the bit device which is turned ON in the <syntax> is always set to ON.

* A program whose bit device is always set to ON

Structured ladder/FBD program
ST program i
equivalent to ST program
IF M0 THEM o ‘
0= TRUE; !
: . 1 R
END_IF: : L

To avoid the bit device to be always set to ON, add a program to turn the bit device OFF as
shown below.

» A program to avoid the bit device to be always set to ON.

1 Structured ladder/FBD program

*,
ST program equivalent to ST program

IF b0 THEM

0 = TRUE;
MO Yo
EL=E I'—C)

%0 = FALSE:
EMND_IF:

*1 The above program can also be written as follows.
YO := MO;
or
OUT(MO,YO0);
Note that, when the OUT instruction is used in <syntax> of conditional syntax or iteration syntax, the program
status becomes the same as the program whose bit device is always set to ON.

(2]
=
<
o
o
o
o
s

WRITING

5.18T
5.1.6 Precautions when using conditional syntax and iteration syntax

(2) When QO0OUCPU, QO0UJCPU or, Q0O1UCPU is used, and the string type is applied to
Boolean expression (conditional expression) with conditional syntax or iteration syntax, a
compilation error may occur.

* Program example which causes compilation error

ST program
"WACI" THEM

Compilation error occurs
when specifying string type data.

To avoid a compilation error, create the function blocks of the string type comparison with
ladder or structured ladder/FBD, and apply the operation result of function blocks to the
conditional expression of conditional syntax or iteration syntax.
The following is an example when creating the function blocks with structured ladder/FBD.
* Program creation example which avoids compilation error
@ Create the function blocks of the string type comparison with structured ladder/FBD
program.

Function block (EQFB_01)

. BMgos - - - - LD%= |
|- EM EMNO ——0Out_Bool

----- In_Stringl — &l S

----- In_StringZ ——{82 o

@ Apply the operation result of function blocks (EQFB_01) to the conditional expression
in ST program.

Label setting

Class Label Mame Data Tupe
1 |WaR - | ar_Sthing Shing(32)
2 |VaR w |%ar_Bool Eit
3 VAR - |Inst_EGFE EGQFE_O1
ST program

Inst_EQFE(In_String1 :=“ar_String,
In_Stringe = "MOJI",
Out_| Eh:u:l “ar_Bool);)
IF TRUE €Var_Bool) Apply the operation result of
Y e TRUE function blocks (EQFB_01)
EMND_IF;

5.1S8T
5.1.6 Precautions when using conditional syntax and iteration syntax

5.2 Structured Ladder/FBD

The structured ladder/FBD is a graphic language for writing programs using ladder symbols such
as contacts, coils, functions, and function blocks.

5.2.1 Standard format

Contact

0>

Ladder block label ‘ S —{ Function (e
: i e ‘ Function block ‘
- :

P £ ¢
- - - - Mi—EM EMNO ————— - LadderFEInstance -
-TC1—— TCaoil SRR ‘ LadderFB -
11— Tvalue o EN EMOD — - -
o M0 —— Input] Cutput] ——r4100
M1 —— Input2 Cutput? ——h4101
- o M1Z2—— Inputd Qutputd ——k4102
........ A A
Eeft power rail » . L .
\IRETUI’I"I>' LT

In the structured ladder/FBD language, units of ladder blocks are used for programming.
For structured ladder, connect the left power rail and ladder symbols with lines.

1

()
=
<
o
O]
@]
o
o

WRITING

............. T|MER_1 D_.FB_M_‘} P
............ TIMER_10_FB_M | Lo

Caoil WalueOut ’—'g_word1
-------- o_int? —— Preset Status g_hoold
-------- g_intd —— “alueln R

For FBD, connect the ladder symbols with lines according to the flow of data or signals without
connecting with the left power rail.

....... AND | Lo

coglhooll == e

- g_hool2— - - TIMER_T0_FB_M_t - - - - - -
........... . TIMER_10_FB_ | P
----------- —— Cail WalueOut ,—-g_wurcﬂ
--------- g_int2 — FPreset Status q_hoald
S o_int3 — %alueln ’_‘ o

5.2 Structured Ladder/FBD 5-13
5.2.1 Standard format

5.2.2 Ladder symbols in structured ladder/FBD language

The following table shows the ladder symbols that can be used in the structured ladder/FBD
language.

For details, refer to the following manual.

[MELSEC-Q/L Structured Programming Manual (Common Instructions)
Table 5.2.2-1 Ladder symbols in the structured ladder/FBD language (1/2)

Element Ladder symbol Description
Normal -2 -J J—' Turns ON when a specified device or label is ON.
Negation “1"2 —J I." J—' Turns OFF when a specified device or label is OFF.
Rising edge "1:"2"3 -J T J—l Turns ON at the rising edge (OFF to ON) of a specified device or label.
r Turns ON at the falling edge (ON to OFF) of a specified device or
Falling edge "1"2"3 = ~.|r
label.
Negated risi doe 17273 J /_1}, J—' Turns ON when a specified device or label is OFF or ON, or at the
egatedrising edge B falling edge (ON to OFF) of a specified device or label.

*1,%2,*3

Turns ON when a specified device or label is OFF or ON, or at the
Negated falling edge = ,.l;

rising edge (OFF to ON) of a specified device or label.

Normal 1 —\L _}' | Outputs the operation result to a specified device or label.
o \E _)_. A specified device or label turns ON when the operation result turns
Negation ! " | OFF

. A specified device or label turns ON when the operation result turns ON.
Set 1 —,\LS_}' - | Once the device or label turns ON, it remains ON even when the
operation result turns OFF.

. A specified device or label turns OFF when the operation result turns
Reset ! —JB_}' + | ON. If the operation result is OFF, the status of the device or label
does not change.

*1: Not applicable in FBD.
*2: A contact performs an AND operation or OR operation according to the connection of a
ladder block and reflects in the operation result.
« For a series connection, it performs an AND operation with the operation result up
to that point, and takes the resulting value as the operation result.
« For a parallel connection, it performs an OR operation with the operation result up
to that point, and takes the resulting value as the operation result.

ﬁSeries—connection contact

Parallel-connection contact

*3: Supported with GX Works2 Version 1.15R or later.
For the confirmation method of the version of GX Works2, refer to the following manual.
[Z 5~ GX Works2 Version 1 Operating Manual (Common)

5-14 5.2 Structured Ladder/FBD
5.2.2 Ladder symbols in structured ladder/FBD language

Table 5.2.2-1 Ladder symbols in the structured ladder/FBD language (2/2)

Element Network element Description

Pointer branch instruction
Jump —> Label Unconditionally executes the program at the specified pointer number
in the same POUs.

Return —\I Return > Indicates the end of a subroutine program.
Function II‘?BS | Executes a function.
i
Instance
CTD ‘
Function block — CD Q || Executes a function block.

—— LOAD v
— PV

Function argument input P Inputs an argument to a function or function block.
Function return value output —7 Outputs the return value from a function or function block.
Function inverted argument input P — Inverts and inputs an argument to a function or function block.

Function inverted return value . . .
tout Y Inverts the return value from a function or function block and outputs it.
outpu

EIPOINT

The performance of return differs depending on the programs, functions, and
function blocks being used.
* When used in the programs
End the execution of POUs
* When used in the functions
End the functions. Also, return to the next step of the instruction which called
the functions.
* When used in the function blocks
The performance differs depending on whether "Use Macrocode" is checked or
not on the Property screen.
When it is checked, end the execution of POUs.
When it is not checked, end the function blocks. Also, return to the next step of
the instruction which called the functions.

()
=
<
o
O]
@]
o
o

WRITING

5.2 Structured Ladder/FBD
5.2.2 Ladder symbols in structured ladder/FBD language

5.2.3 Executing order

The following figures explain the program executing order.

The operation order in a ladder block is from the left power rail to the right and from the top to the

bottom.
¥ = @ H® B @ YEI@
1 | | | | | 1 | >
LR @
| | I |
¥ ®
1 |

The program is executed from the left power rail to the right when the ladder is not branched and

ENs and ENOs are connected in series.

X0 D
—I 1
@
MOP
EM EMO
©) D0— 5 d
b0 |
EN ENO
. D10— s d —D11
@
DOV |
L EN ENO
D20— 5 d o

w0

® Fg)

—D

The program is executed from the top to the bottom, when the ladder is branched and ENs and

ENOs are connected in parallel.

0 Voo
i (>e
® ®
MOVE |
— EN ENO
O] D0— s d —D1
MO |
EN ENO |-
DIl— & d —D11
®
DO |
L EN ENO
D20— s d D21

The program is executed in the order as shown below when the MOV instruction (@) in the

above figure is moved to the top.

= EMO |—'
D20 —— s d —D21

MO |
EN ENO -)
Dl0— s d D11 ®
P ry Y0,
j - (>
MOVP
EN ENO -
------------- Dl— & d|—D1

5.2 Structured Ladder/FBD
5.2.3 Executing order

5-16

5.2.4 Ladder branches and compilation results

When the ladder is branched, different compilation results are produced for the program after the
branch depending on the program up to the branch.

The following explains the precautions on compilation results depending on ladder branches.

(1) When one contact is used up to the branch, the instruction of the contact is used multiple
times in the compilation result.

< Example > < Compilation result >

X0 Step Compile Result

LD X0

The LD instructions are

0
1
3
q
5 created using the contact.

< Precautions >

When the device in which the value changes during one scan (such as SM412) is used, only
a part of the sequence program after the branch is executed, and the rest of the sequence
program may not be executed.

< Example > < Compilation result >
Sh412 MOV Skep Compile Resulk
. . EN ENO
o—R . . a LD Sh412
1 Moy L D1 If the value of SM412
3 LD Stz changes during one scan,
IOy 4 MOY D10 D11
EM EMO a part of the program may »
D10—8 d—om & LD 5412 not be executed =
7 Mo D20 D21 : 2F
=0
[l <
EN ENO = o
D2l— s d—D21

When executing multiple instructions against one contact, connect the instructions in series.
Since the sequence program uses the LD instruction only once in the compilation result, all
sequence programs are executed.

< Example >

Shig12 A hAaon, AN
EMN EMO EM END EMN EMNO
Do s d D1 D10 s d D11 D20 s d D21

< Compile Result >

Step Compile Result
u] LD SM412

1 MO Do 01

3 MOy D10 D11
5 MY D20 D21

5.2 Structured Ladder/FBD
5.2.4 Ladder branches and compilation results

(2) When multiple contacts are used, or a function/function block is used up to the branch, the

temporary variable is appended to the branch in the compilation result.

Connect the instructions in series as shown in < Precautions > of (1) to avoid using
temporary variables in the compilation result.

For details on temporary variables, refer to the following manual.

[~ GX Works2 Version 1 Operating Manual (Structured Project)

@ Multiple contacts are used up to the branch

< Example >

Shid12 Shi400 MO
1 EM ENO
0 d D1 0

< Compilation result >

Skep Compile Result:
LD SM412
a0 S0

[ST

& 1 temporary variable.

1
2 <«+— The operation result up to
3

LD M5191) «——— Temporary variable is

D21 9 Moy D20 D21 appended_

@ Output value of function or function block is branched

< Example >

LD« kD
EN ENO ER ERO
(1] sl 0 s

o100 82

< Compilation result >

Step Carmpile Result
0 LD D0 D100
OUT M3190) «—— The operation result up to

4 the branch is output to the
1'\ temporary variable.

[=]
— (Lo ma1an) «—— Temporary variable is
10

MOy D20 D21 appended.

5-18

5.2 Structured Ladder/FBD
5.2.4 Ladder branches and compilation results

the branch is output to the

5.2.5 Precautions on creating programs with structured ladder/FBD

The following explains the Precautions on creating a program with structured ladder/FBD.

When QO0UCPU, QO0UJCPU, QO01UCPU is used, and the string type is applied to enter the
standard comparison functions, a compilation error may occur.

* Program example which causes compilation error

Structured ladder/FBD program

WEr_ S O e—
- MO — . d —~0 -

To avoid a compilation error, use LD$=, LD$<>, LD$<=, LD$<, LD$>=, or LD$> instructions.
* Program example which avoids compilation error

Structured ladder/FBD program

‘ Coegihool - = | C

1| ENM ENO —0

-------- war_String —{sl Co
---------- "MOJI" — 52

(2]
=
<
o
o
o
o
s

WRITING

5.2 Structured Ladder/FBD
5.2.5 Precautions on creating programs with structured ladder/FBD

MEMO

5-20

OVERVIEW

APPENDICES

STRUCTURED DESIGN OF
SEQUENCE PROGRAMS

PROCEDURE FOR
CREATING PROGRAMS

Appendix 1 Correspondence between Generic Data Types and Devices App-2
Appendix 2 Character Strings that cannot be Used in Label Names and Data Names . . App-6
Appendix 3 Recreating Ladder Programs i App-9

PROGRAM
CONFIGURATION

WRITING
> PROGRAMS

APPENDICES

INDEX

App-1

Appendix 1 Correspondence between Generic Data
Types and Devices

The following table shows the correspondence between generic data types and devices.

Table App. 1-1 Correspondence between generic data types and devices

Device

Classification Type Device name Device symbol

Input X
Output Y
Internal relay M
Latch relay L
Annunciator F
Edge relay \%
Step relay S

Bit device Link special relay SB
Link relay B
Timer contact TS

Internal user device Timer coil”! TC

Retentive timer contact STS
Retentive timer coil”! STC
Counter contact’’ cs
Counter coil CcC
Timer current value Tor TN
Retentive timer current value ST or STN™!
Counter current value CorCN™

Word device
Data register D
Link register Wi
Link special register SwW
Function input FX

Bit device Function output FY

Internal system device Special relay SM

Function register FD

Word device
Special register SD

*1: Can be used for digit specification.
*2: Can be used for bit specification.

App-2 Appendix 1 Correspondence between Generic Data Types and Devices

Generic data type

ANY
ANY_SIMPLE
ANY
ANY_NUM
ANY_BIT
ANY_INT ANY_REAL
Double .)) Array | Structure
Word word Word Double | Single- | Double- | Time String
Bit (unsigned)/ . i word | precision | precision ANY16 | ANY32
.| (unsigned)/ | (signed) | .
16-bit string o (signed) real real
32-bit string

O o1 | o1 | o1 | on X X X X X X O™ O
O o1 | o1 | O | Of X X X X X X O™ O
O on on o on X X X X X X o o™
O o on o™ on X X X X X X o™ o™
O on on on on X X X X X X o o
O X X X X X X X X X X X X
O on on o on X X X X X X o o™
O o on o™ on X X X X X X o™ o™
O on on on on X X X X X X o™ O™
O on on o o™ X X X X x X O O
O o™ o™ o™ o™ x X x X x X on o™
O o1 | o1 | o1 | on X X X X X X O™ O
O on on on on X X X X X X o™ O
O on on o on X X X X X X o™ o™
O o on o™ on X X X X X X o™ o
X O X O X X X X X X X O X
X O X O X X X X X X X O X
X O X O X X X X X X X O X
02 O X O X X X X X X X O X
02 O X O X X X X X X X O X
02 O X O X X X X X X X O X
O on on on on X X X X X X oM O™

- - - - - X X X X X X -
02 O X O X X X X X X X O X

Appendix 1 Correspondence between Generic Data Types and Devices

App-3

APPENDICES

Device

Classification Type Device name Device symbol
Link input Jn\X
Link output Jn\Y
Bit device
Link relay Jn\B
Link direct device
Link special relay Jn\SB
Link register Jn\W
Word device
Link special register Jn\SW
Intelligent function module
) g Word device Intelligent function module device un\G
device
Index register Word device Index register z
File register Word device File register R or ZR
Nesting - Nesting N
Pointer P
Pointer -
Interrupt pointer |
K, H
Constant - -
E

String constant

'Character string' or "Character
string"

*1: Can be used for digit specification.
*2: Can be used for bit specification.

App-4

Appendix 1 Correspondence between Generic Data Types and Devices

Generic data type

ANY
ANY_SIMPLE
ANY
ANY_NUM
ANY_BIT
ANY_INT ANY_REAL
Double i)) Array | Structure
Word word Word Double | Single- | Double- | Time String
Bit (unsigned)/ . i word | precision | precision ANY16 | ANY32
| (unsigned)/ | (signed) | .
16-bit string o (signed) real real
32-bit string

O O o™ o o™ x X x X x x o o™
O on o on on x x X x X X o on
O O o O o X X X X X X o™ O™
O O™ o O™ o™ X X X X X X o™ O™
O O X O X X X X X X X O X
O O X O X X X X X X X O X
Or2 O X O X X X X X X X O X

X O X O X X X X X X X O X
02 O X O X X X X X X X O X
O O O O O O x x x X X O O

X X X X X O O X X X X X X

X X X X X X X X O X X X X

Appendix 1 Correspondence between Generic Data Types and Devices

App-5

APPENDICES

Appendix 2 Character Strings that cannot be Used in
Label Names and Data Names

Character strings used for application function names, common instruction names, special
instruction names, and instruction words are called reserved words.

These reserved words cannot be used for label names or data names. If the character string
defined as a reserved word is used for a label name or data name, an error occurs during
registration or compilation.

The following tables shows character strings that cannot be used for label names or data names.

The numbers from () to @ in the tables indicate the following label names and data names.
<Label name and data name>
@ Project file name
() Program file name (Simple (without labels))
(3 Program file name (Simple (with labels))
(@ Program file name (structure)
(®) Task name
(®) Global label data name
@ Structure name
POU name
(9 Label name

Table App. 2-1 Character strings that cannot be used for label names and data names (1/3)

Category Character string @ @166l |6 |6 |® ©)
VAR, VAR_RETAIN, VAR_ACCESS, VAR_CONSTANT,
VAR_CONSTANT_RETAIN, VAR_INPUT, VAR_INPUT_RETAIN,
VAR_OUTPUT, VAR_OUTPUT_RETAIN, VAR_IN_OUT,
Class identifier VAR_IN_EXT, VAR_EXTERNAL, VAR_EXTERNAL_CONSTANT, « O « % « % « % «
VAR_EXTERNAL_CONSTANT_RETAIN,
VAR_EXTERNAL_RETAIN, VAR_GLOBAL,
VAR_GLOBAL_CONSTANT,
VAR_GLOBAL_CONSTANT_RETAIN, VAR_GLOBAL_RETAIN
BOOL, BYTE, INT, SINT, DINT, LINT, UINT, USINT, UDINT, ULINT,
WORD, DWORD, LWORD, ARRAY, REAL,
LREAL, TIME, STRING, TIMER, COUNTER, RETENTIVETIMER,
Data type POINTER, Bit, Word [Unsigned]/Bit String [16-bit], Double Word O O X X X X X X X
[Unsigned]/Bit String [32-bit], Word [Signed], Double Word
[Signed], FLOAT (Single Precision), FLOAT (Double Precision),
String, Time, Timer, Counter, Retentive Timer, Pointer

ANY, ANY_NUM, ANY_BIT, ANY_REAL, ANY_INTLANY DATE | O | O | x | x | x | x | x | x | x

Data type hierarchy

ANY_SIMPLE, ANY16, ANY32 AT X

O
O
O
O
O
O
O

X,Y,D,M, T,B,C,F,L,PV,Z W, ILN,U,J,K H,E,A,SD, SM,

Device name . " X
SW, SB, FX, FY, DX, DY, FD, TR, BL, SG, VD, ZR, ZZ 2 O O O O O O O A

Character string
recognized as device

*3
(Device name + Such as X0 O O X X X X X A X
Numeral)
NOT, MOD O O X X X X X X X
ST operator
¢).- OO |]O O |O|]O |0 |aM] x

(O : Applicable, A: With restrictions, X: Not applicable
*1: Functions cannot be used.
*2: Whether to handle a device name indexed with ZZ device as a reserved word depends on the parameter
setting.
When Z device is specified for 32-bit index setting: Not handled as a reserved word
When ZZ device is specified for 32-bit index setting: Handled as a reserved word
*3: Applicable for Simple projects without labels only.

App-6 Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

Table App. 2-1 Character strings that cannot be used for label names and data names (2/3)

Category Character string D66 |6 |® ©)

LD, LDN, ST, STN, S, S1, R, R1, AND, ANDN, OR, ORN, XOR,
XORN, ADD, SUB, MUL, DIV, GT, GE, EQ,

NE, LE, LT, JMP, JMPC, JMPCN, CAL, CALC, CALCN, RET,
RETC, RETCN

LDI, LDP, LDPI, LDF, LDFI, ANI, ANDP, ANDPI, ANDF, ANDFI,
ANB, ORI, ORP, ORPI, ORF, ORFI, ORB, MPS, MRD, MPP, INV,
MEP, MEF, EGP, EGF, OUT(H), SET, RST, PLS, PLF, FF,
DELTA(P), SFT(P), MC, MCR, STOP, PAGE, NOP, NOPLF

X O X X X X X X X

IL operator

Application instructions such as DMOD, PCHK, INC(P)

[C5~ MELSEC-Q/L Programming Manual (Common Instructions),
MELSEC-Q/L Structured Programming Manual (Common
Instructions) @) O @) O @) O O | A" X
(-5~ FXCPU Structured Programming Manual [Basic & Applied
Instruction], FXCPU Structured Programming Manual [Application
Functions]

Application instruction
in GX Works2

SFCP, SFCPEND, BLOCK, BEND, TRANL, TRANO, TRANA,
TRANC, TRANCA, TRANOA, SEND, TRANOC, TRANOCA,
TRANCO, TRANCOC, STEPN, STEPD, STEPSC, STEPSE
SFC instruction STEPST, STEPR, STEPC, STEPG, STEPI, STEPID, 101010101010]A x
STEPISC, STEPISE, STEPIST, STEPIR, TRANJ, TRANOJ,

TRANOCJ, TRANCJ, TRANCOJ, TRANCOCJ

RETURN, IF, THEN, ELSE, ELSIF, END_IF, CASE, OF,
END_CASE, FOR, TO, BY, DO, END_FOR, WHILE,
END_WHILE, REPEAT, UNTIL, END_REPEAT, EXIT, TYPE,
END_TYPE, STRUCT, END_STRUCT, RETAIN,

ST code body VAR_ACCESS, END_VAR, FUNCTION, END_FUNCTION, OO | x| x| x [x| x| x|x
FUNCTION_BLOCK, END_FUNCTION_BLOCK, STEP,
INITIAL_STEP, END_STEP, TRANSITION, END_TRANSITION,

FROM, TO, UNTILWHILE

Function name in

application function Function names in application functions such as AND_E, NOT_E O O O O O O X X X

Function block name in

. . Function block names in application functions such as CTD, CTU O X X X
application function
* 0 Pon o = [A '
LS 2,<5> 000 =56 %~ @, (1L &N . tab % « % « « % « % «
character
Symbol ; O | x X X X X X x X
L#$,° C|lO|]O |0 | x|O]|Xx X X
Date and time literal DATE, DATE_AND_TIME, DT, TIME, TIME_OF_DAY, TOD X O X X X X X X X

ACTION, END_ACTION, CONFIGURATION,

END_CONFIGURATION, CONSTANT, F_EDGE, R_EDGE, AT,

PROGRAM,

WITH, END_PROGRAM, TRUE, FALSE, READ_ONLY,

Others READ_WRITE, RESOURCE, END_RESOURCE, ON, TASK, % O % % % % % % %
EN, ENO, BODY_CCE, BODY_FBD, BODY_IL, BODY_LD,

BODY_SFC, BODY_ST, END_BODY,

END_PARAMETER_SECTION,

PARAM_FILE_PATH, PARAMETER_SECTION, SINGLE,

RETAIN, INTERVAL

APPENDICES

(O : Applicable, A: With restrictions, X: Not applicable
*1: Functions cannot be used.

Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

App-7

Table App. 2-1 Character strings that cannot be used for label names and data names (3/3)

Category Character string @ I | 6|6 | ® ©)
tSc;trlzsg that starts with K1 Such as K1AAA O O O O o O O A «
Address Such as %IX0 O X X X X X X X X
Statement in ladder ;FB BLK START, ;FB START, ;FB END, ;FB BLK END, ;FB IN, ;FB
language OUT, ;FB_NAME;,INSTANCE_NAME, O X X X X X X X X

guag FB, :INSTANCE
Common instruction Such as MOV O O X O O X X | AT X
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8,
Windows reserved word | COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, X X X X X X X X O

LPT9, AUX, CON, PRN, NUL

*1: Functions cannot be used.
*3: Applicable for Simple projects without labels only.

(1) Precautions on using labels

(O : Applicable, A: With restrictions, X: Not applicable

« In a function, the same name as the function cannot be used for a label.

+ A space cannot be used.

* A numeral cannot be used at the beginning of label name.

label and a local label by setting the following option in GX Works2™".

A label name is not case-sensitive. An error may occur at compilation when the same
label names with different cases (example: 'AAA' and 'aaa’) are declared.

*1: Check the "Use the same label name in global label and local label" item under [Tool] = [Options] =

"Compile" = "Basic Setting".

» An underscore (_) cannot be used at the beginning or end of label name.

Consecutive underscores (_) cannot be used for data name and label name.

In structured ladder/FBD and ST programs, the same label name can be used for a global

» For Simple projects, function names and function block names in common instructions

and application functions can be used.

App-8 Appendix 2 Character Strings that cannot be Used in Label Names and Data Names

Appendix 3 Recreating Ladder Programs

This section provides an example of creating a structured program same as the program created
in the ladder programming language using GX Works2.

Appendix 3.1 Procedure for creating a structured program

The following explains the basic procedure for creating a structured program based on the
program created in the ladder programming language.

(1) Replacing devices with labels

Procedure

Labels include global labels and local labels.
Determine the type of labels (global label or local label) to replace devices.

{1

Procedure

(2) Setting labels

Global labels and local labels to be used in the program must be defined.

{1

Procedure

Define all labels to be used in the program.

(3) Creating a program

Create a structured program in the programming language to be used.

APPENDICES

Appendix 3 Recreating Ladder Programs AbD-9
Appendix 3.1 Procedure for creating a structured program PP

Appendix 3.2 Example of creating a structured program

This section shows an example of creating a sequence program same as the program created in
GX Developer using GX Works2.

The following examples explain the method for creating a structured program same as the data
receive program for a Q-compatible serial communication module, using the structured ladder/
FBD and ST languages.

The following shows the original program.

X3
it fwove k1 D0 1 Specify the receive channel.
X4
i {Fuove ko o1 K2 1 Clear the reception result and receive data count
storage device to 0.
fuove k1o 03 3 Specify the allowable receive data count.
{G. INpUT UO Do D10 Mo 3 with normal completion, the receive data within the
o W allowable receive data count (user specified) is read
it HF {wov 02 20 1 from the receive data storage area in the buffer memory.
« Once the INPUT instruction is executed, the user
[BMOV D10 D110 K0Z0 1 ?pecified read completion signal (M0) turns ON for
scan.
i « The reading of receive data and switching of the
L I
il LSET oo] ON/OFF status are performed by the programmable
X100 controller CPU.
it {rst M100 1 The abnormal completion flag is reset by an external
command.

(1) Replacing devices with labels
Replace devices of the original program with labels.
Replace input/output devices with global labels. For devices such as internal relays, replace
them with local labels.

Table App. 3.2-1 Examples of replacement from devices to labels

i Label
Device Purpose
Data type Label name
X3 CH1 reception data read request Bit CH1ReadRequest
X4 CH1 reception abnormal detection Bit CH1AbnormalDetection
DO Reception channel
D1 Reception result

| . Word (unsigned)/16-bit
D2 Control data Number of reception data . ControlData
string [0] to [3]

D3 Number of allowable reception
data

. Word (unsigned)/16-bit .
D10to D109 | Reception data) ReceiveData
string [0] to [99]

. Word (unsigned)/16-bit
D110 to D209 | Reception data storage area . Data
string [0] to [99]

MO Data Completion flag

reception

P . . Bit [0] to [1] Completion

M1 completion Status flag at completion

flag
M100 Abnormal completion flag Bit AbnormalCompletion
X100 Abnormal completion flag reset command Bit ResetAbnormalCompletion

App-10 Appendix 3 Recreating Ladder Programs

Appendix 3.2 Example of creating a structured program

(2) Setting labels
Set global labels and local labels.

+ Setting examples of global labels

Class Label Mame Data Type Constant Device Address
1 WAR_GLOBAL + |CH1 ReadRequest Bit 3 3
2 |VAR_GLOBAL w |CH1 AbnaormalDetection Bit wd Hlwd
3 |VAR_GLOBAL + | ResetdbromalCompletion Eit =100 %lx256
- Setting examples of local labels '
Clazz Label Mame [rata Type Constarnt
WoR w | ControlD ata Wword[Unsigned]/Bit Stina[16-bit][0..3]
WoR |Receivellata Wword[Unsigned]/Bit Stina[16-bit][0..1]
WoR w | Completion Bit[0..1]
WoR |Data Wword[Unsigned]/Bit Stina[16-bit][0..9]
WoR » | AbnormalCompletion Bit

*1: Devices of local labels are automatically assigned within the range specified in the
device/label automatic-assign setting in GX Works2.
To assign the same devices as those in the original ladder program, set them as global

labels.

APPENDICES

Appendix 3 Recreating Ladder Programs
Appendix 3.2 Example of creating a structured program

App-11

(3) Creating a structured program

The following examples show how a structured program is created based on the original
program.

+ Original program (Programming language: ladder)

13
- HOvP kI i 1
14
— [FHOVF KD O ke 1
THOvP K10 D3 il
[G.INPUT LD b0 D10 N 1
o N1
I L [Hoy D2 20 1
[BMOY D10 DI10 Koz0 1
N1
| [5ET R 3
%100
o [RST 100] }@

« Structured program (Programming language: structured ladder/FBD)

1
: CHi1ReadRequest - - - - - - R AP :
. . J| EN EMO — - - - - - - '
1 - S . g d ——ControlDatal0]- 1
: CH1AbnormalDetection o o :
' I o © o FMOVP '
' P | EN EMO P 1
: R I d ——ContralDatal1]- :
. .2 il o '
1 1
: MOWP .
' EN EMO — - - - R '
, A0 g d ——ContralDataf3]. - - - R ' @
1 _— 1
, . oo .
1 1
' G_INPUT | : !
. EM ENO S .
. e U d1 ’_.ReceiveData[D] : 1
1 ConttolData—— g dz ,—ICDmpIetlon- :
1
1 1
1 1
B o o o oww ww oww mw mw ww mw ww mw mw mw mw e mw mw mw e mw mw e mw mw mw mw o mw mw e e mw e e e W e W mw M mw e M e e M e e M W e e e M e M M e e me e e e e =
L CLTTThTTTTTTTTTInTTTTETTTTTTTTTTTRTTTRTTTTTTT '
. Completion(0] - - Completion[t] - - - - - - - - - - BMOY | .
! I} I+ 1 EN ENO - - -]
: S o - ReceiveData[0]—— d Dataf0] :
! : -ControlData[2]—d .o .
; _ '@
' - Completion[1] - SET : '
f J . J‘ EM EMO - - - - - f
: d ——AbnormalCormpletion !

1
e e e e e e e e e e e e — e — e ——————— S J
1 o i i o o = = |
1 . 1
: Fesethbnormal Completion EST 1 @
! I EN ENO [~ !
1 d ——AbnormalCompletion f
1
I oo o e e e e e e e Em e e Em Em e e e e e e e e M R Em e Em e e R e e e e e e e e e e e e e e Em e e e = _I
App-12 Appendix 3 Recreating Ladder Programs

Appendix 3.2 Example of creating a structured program

* Original program (Programming language: ladder)

G_INFUTITRUE, 0, ControlData, RecerveData[l], Completion);

X3
— {movp K1 DO
X4
— | {Fmove ko D1 K2
{Move k10 D3
[a. INPUT UO 0o D10 Mo
*1
MO M
} ‘& {mov D2 70
[emov pio D110 K070 @
M 1
| {seT M100
X100
— | {RsT M100 }@
* Structured program (Programming language: ST)
i IFCHiReadRequest OR CHTAbnormalDetection THEN 777777777+ !
1
1 1
' ControlData[0] :=1; X
1 ControlData[1] :=0; ,
v ContrelData[2] :=0; :
! ControlData[3] :=10;
1 1
1 1
1 1
1 1
1 1
1 1

| Bl 1
BMOgTCompletion[0] AND MOT Cormpletion[1] Beceive Data[0], ControlData[2], Data[0]);

*1: When using multiple contacts for execution conditions, enclose them by '()" to be
programmed in a group.

APPENDICES

Appendix 3 Recreating Ladder Programs App-13
Appendix 3.2 Example of creating a structured program PP

MEMO

App-14

MIINGINO

SAYYO0dd JONINDIS

SWYHO0dd ONILYIHD

40 NOIS3a a3dNLONYLS

¥04 F¥NA3I00Ud

NOILVYHNOIINOD
NVHO0dd

SNVHO0dd
ONILIEIM

S30I1ANIddY

X3ANI

Index-1

[Numeric character]

32-bitindex settingcccceeeeeeviiicce e 4-45
[A]

F= 1o [0 [{ oY1= N 4-39,4-40

= = YU 4-35
[B]

Bitdata......oooviieeeie 4-22
[C]

calling function blocksccccoiiiiiiinnee 5-10,5-11

calling funCtions...........cccoiieiiiiiii e 5-9

ClASS ..t 4-16

CONSEANT....coiii i 4-20

correspondence between generic data types

aNd AEVICESuvviiiiiiiiiie e App-2
[D]

data types. ..o 4-18

AEVICE ..uvuteieee e 4-38,4-40,App-2

double word (32 bits) data..........ccccce v, 4-26

double-precision real data.............ccccccvniiiieenennnnn.. 4-29
[E]

elementary data types........cccccceviiiiiie 4-18

EN s 4-13

ENO Lo 4-13

executing condition ... 4-4
[F]

FBD .ot 5-13

function blockscccociiiiiiiii 4-7

fUNCHIONS ... 4-6
[G]

generic data type........ccoo i, 4-19

global [abels ... 4-15
[H]

hierarchy ..o 1-7,2-2
[

iNdex Settingoooveeeeiei 4-43

input variablescccoeeeeiiiiii, 4-16

input/output variablesccccoc 4-16

INSTANCES ... 4-7,4-12
[L]

ladder block [abels ... 4-8

[adder bIOCKSueiiiiiieiei i 4-8

ladder symbolScoooiiiiiiiii e 5-14

Draries.oooie 4-55

local 1abels ..., 4-15
[M]

method for specifying data.............cccccceeeeviinennnn. 4-21

[O]
OPEIALONS ..ottt 5-3
output variablesccceeeviiiiiiii, 4-10,4-16
[P]
POU ...t 4-5
precautions on assigning label names 4-57
o] (o T4 1y PP RRTP 4-4
(o] eTe| =T o ¢ IR S 4-5
Program bIOCKSc.uvieiiiiiiiiieeee e 4-6
program COMPONENESuveeeeeeieeeeeniiiiiiiinnne 1-7,2-3
Program fil€S.........ccoviiiiiiiiiiie e 4-3
0] o] [T o PSR 2-2,4-3
[S]
single-precision real datacooceeiiiiiiiiennn 4-29
specify a bit device of word device........................ 4-22
specify digits of bitdata...........cccceveviinei, 4-23
specifying digits of bit devices...........cccccevviiineenn. 4-23
S 3 SRS 4-9
standard formatccooiiiiii e 5-2,5-13
string data.........ooooiiiiiiii 4-33
SEUCIUIE ... 4-37
structured design........coooiiiiiiiiiii 1-7
structured ladderccoceeeiiiiiiiiiee 4-9,5-13
SYNEAX 1ttt 5-4
[T]
BASKS . 4-4
The structured ladder/FBDccccoccviieeeeicinnennn. 5-13
[U]
USer libraries ... 4-56
W]
word (16 bits) data...........cccceveiiii 4-23

Index-2

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the
product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or
Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be

solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning,

maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated

place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months,

and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of

repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc.,
which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution
labels on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure
caused by the user's hardware or software design.

2. Failure caused by unapproved modifications, etc., to the product by the user.

3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if
functions or structures, judged as necessary in the legal safety measures the user's device is subject to or
as necessary by industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by
force majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from
Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is
discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at
each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any
cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures
of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for
accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user,
maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Mcrosoft, Windows, Windows Vista, Windows NT, Windows XP, Windows Server, Visio, Excel, PowerPoint, Visual Basic,
Visual C++, and Access are either registered trademarks or trademarks of Microsoft Corporation in the United States,

Japan, and other countries.

Pentium is a trademark of Intel Corporation in the United States and other countries. S"/
Ethernet is a registered trademark of Xerox Corp. .
The SD and SDHC logos are either registered trademarks or trademarks of SD-3C, LLC. S",m
All other company names and product names used in this manual are either trademarks or

registered trademarks of their respective companies.

SH(NA)-080782ENG-M

MELSEC-Q/L/F Structured
Programming Manual

Fundamentals

MODEL Q/FX-KP-KI-E
MC%%EEL 13JWO06

SH(NA)-080782ENG-M(1307)KWIX

2% MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCH]I, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	REVISIONS
	INTRODUCTION
	CONTENTS
	MANUALS
	1. OVERVIEW
	1.1 Overview
	1.2 Purpose of This Manual
	1.3 Terms
	1.4 Features of Structured Programs
	1.5 Applicable CPU Modules
	1.6 Compatible Software Package

	2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS
	2.1 What is a Hierarchical Sequence Program?
	2.2 What is a Structured Sequence Program?

	3. PROCEDURE FOR CREATING PROGRAMS
	3.1 Procedure for Creating Sequence Programs in Structured Project

	4. PROGRAM CONFIGURATION
	4.1 Overview of Program Configuration
	4.1.1 Project
	4.1.2 Program files
	4.1.3 Tasks

	4.2 POUs
	4.2.1 Types of POU
	4.2.2 Program
	4.2.3 Functions
	4.2.4 Function blocks
	4.2.5 Operators
	4.2.6 Ladder blocks
	4.2.7 Programming languages for POUs
	4.2.8 Functions, function blocks, and operators
	4.2.9 EN and ENO

	4.3 Labels
	4.3.1 Global labels
	4.3.2 Local labels
	4.3.3 Label classes
	4.3.4 Setting labels
	4.3.5 Data types
	4.3.6 Expressing methods of constants

	4.4 Method for Specifying Data
	4.4.1 Bit data
	4.4.2 Word (16 bits) data
	4.4.3 Double word (32 bits) data
	4.4.4 Single-precision real/double-precision real data
	4.4.5 String data
	4.4.6 Time data
	4.4.7 Arrays
	4.4.8 Structures

	4.5 Device and Address
	4.5.1 Device
	4.5.2 Address
	4.5.3 Correspondence between devices and addresses

	4.6 Index Setting
	4.7 Libraries
	4.7.1 User libraries

	4.8 Precautions on Assigning a Name

	5. WRITING PROGRAMS
	5.1 ST
	5.1.1 Standard format
	5.1.2 Operators in ST language
	5.1.3 Syntax in ST language
	5.1.4 Calling functions in ST language
	5.1.5 Calling function blocks in ST language
	5.1.6 Precautions when using conditional syntax and iteration syntax

	5.2 Structured Ladder/FBD
	5.2.1 Standard format
	5.2.2 Ladder symbols in structured ladder/FBD language
	5.2.3 Executing order
	5.2.4 Ladder branches and compilation results
	5.2.5 Precautions on creating programs with structured ladder/FBD

	APPENDICES
	Appendix 1 Correspondence between Generic Data Types and Devices
	Appendix 2 Character Strings that cannot be Used in Label Names and Data Names
	Appendix 3 Recreating Ladder Programs
	Appendix 3.1 Procedure for creating a structured program
	Appendix 3.2 Example of creating a structured program

	INDEX
	WARRANTY

